
www.manaraa.com

CMU-CS-78-11G

The Design and Analysis

of Algorithms for

Asynchronous Multiprocessors

G_.rard M. Baudet

Deparlmr,.nt of Computer Sci.ence
Carnegi.e-MeUon Uni.versLty

P[tLsburgh, PennsytvanLa 15213
/

April 28p 1978

Submitted to Carnel]i_e-Mel.Lon Uni.versity i.n partLaL fuLfi.ttment of the requLrements
for the degree of Doctor of PhLLosophy

Thi.,.; research was parity supported by the National Sci.ence Foundation under Grant MCS
75--222-55 and the OffLce of Naval Research under Contract NOOOJ4-76-C-0370, and
parity t)y a Research Grant from the lnstitut de Recherche d'lnform_tLque et d'AutomatLque
(]R]A), Rocquencourt, Fran¢:e.

www.manaraa.com

www.manaraa.com

Acknowledgements

The advice and a.,_i;.tance of H. T. Kun_ have been instrumental Ln the development
of this thesis, tt(: Iia.,; been more than an advt,;or to me, and I would like to express very
speci.al thank.,., to him for r_:a(tinp, numerous drafts, for maki.np, many sugResti.ons, and for
hLs conti.nuaL encouragement.

] am also espec_all.y _rateful. to Joe Trnub for h_s comments and support. As
Chairman of the Computer S(i.en(e Department, he has contributed _reatty to the
development of an atmosphere favorable to carry{n_ out my research.

I would also t{ke to thank the two other members of my (ommittee, B_tl. WuLf and
Sam Fuller, for theist help and (:ooperati.on.

Chapter il wa._; initially written as a technical report Ln conjunctLon wi.th
f_i.chard []rent, from lhe Au.'.;tral_an Univer,.;ity at Canberra, and H. T. Kunp,. I am also
5ratefuL to Peter Oie[nix_k for helpi.np_ me i.mp[em_nt algorithms on C.mmp, and to
I.evy f_aski.n for rtlr'lllitl_, the same experi.ments on Cm*.] would also I.ike to thank
John Rol)i.nson an(I |]rtJce Wei.(ie, and Henryk Wo_n_akowskL, from the UnLversi.ty of Warsaw,
for tJsefut comments and (li[_(;ussi.ons.

La.,;t hut not least,] would li.ke to thank my wife for her Lnsp_rati.on, understandLni_
and TLC throuBhout th_s ordeal.

www.manaraa.com

www.manaraa.com

Copyright (_) 1978, by G6rard M. Baudet

www.manaraa.com

I

I

, iV

www.manaraa.com

Abstract

The characteri_Jic of an asynchronous multi,processor is that Lt i.s composed of
several processors capable of carry_np, out the executi,on of thei,r own prop.rams i,n a
completely i.ndependent fashi.on. As a con_.;equence, parallel aip,orithm.,., for asynchronous
mtJtti,processors present r_ome uni.que aspects Ln both thei.r desi.p,n and theEEranatysi,s. Thi.s
thesi.s expl.ores the t",_,.,ue,'.,rai._,ed by the d(:si,gn and the anaty.,_is of parallel alp,ori.thms for
asynchronous multiproce..-;.:-',or.£ and illustrates the various notions and concepts i,nvolved
wi,th these alBorithms by consi.derLnp, problems i,n all.verse areas. The thesi.s demonstrates
that asynchronou.,_ mIJltiprocessor,.; can be used effi,cientty i,n di,fferent problem domains,
provi,ded that appropriate alBorithm.-, are used. It also i,llustrates vari,ous techniques
useful Ln the anaty._i_ of such algorithms.

As evidenced by a seri,e:._ of experimental results, the computati.on time requi,red by
a process to execute .,:everal instances of the same task on an asynchronous multi,processor
cannot be re6arded as (on._4ant and {s actually subject to important ftuctuati,ons. These
ftuctuati,ons i.n ¢omputati,on ti,mes have a neRatLve effect on the performan(e of parallel.
alBorithms when .,_everat processes cooperatinp, Ln the sotuti,on of a problem communicate
extensi,vel.y amonF, !hem((elves. In this case, when synchronization i.s used, i.t tends to
Lntrodu(::e a prohi,bi.tive ov(.,rhead which decreases the parallelism. On the other hand, an
al_ori,thm is presented to i.llustrate that the fluctuations are not always a neRati.ve factor
but (:an at,..o be utilized advanta£eout_ly, The alRorithm demonstrates the seeminp, Ly
counter.-intlfi.ti,ve re;;ult that the execution of a purely sequential, proF,(am {:an st{It be
accelerated on an asynchronous mult[pro(essor wi,thout [ntroducEnR any paratleli,sm wi.thLn
the proBram itself, hut only I)y taki.n_ advantap, e of the fluctuations i,n computati.on ti,mes.
Two different parallel i,mp[ementat(ons of this atRorithm are proposed (with and without
(rill.cat section), and analy,._es are pr(:r_ented to measure the speecl.-up achi.evabte.

in the domai,n of humor[cal, app[[cat[on.,_, the class of as ynchronou.s iteratZt_e ntethod$
Ls Lntroduced to remove the need for synchronLzati,on i,n the i,mplementati,on of iterations
for sotvi,n6 a sy.-4t('m of equati,on.,_ on a multi,processor. This class i,nctudes i,terati.ons
corre._pondinF, to parallel Lmptementati,ons in which the cooperati,nF, processes have a
mirli,mum of i,nter--communi,cati,on and do not make any use of synchoni,zatLon. The Ptzrel3,
synchronou,. methocl i,s a typical example. A sufficient conditi,on i,s established which
I]uarantees the converp_ence of any asynchronous iterati,ons. This condi,ti,on i,s sail,stied for
systems o{ equati,on.,, found i.n numerous practical apptLcati,ons.

Sev(..'rat asynchronous iterations have actuail.y been implemented on an asynchronous
muttiproces_;or, f:-xperi,menlal results are reported, and they show that the Purely
Asynchronou:_ methocl achEEeves an almost opti,mal, speed.-up. The experi,ments consti,tute an
i.ltustration of the val"iotls noti,ons and (:on(:epts speci,fi,c to the des[Rn and analysi,s of
parallel aIBorithms for asynchronous multi,processors. It i,s also shown how simple
techni,ques drawn from order stati.sti,cs and queueLng theory can be used to predict the
experiimental results wi.th a fair accuracy.

rhe cv.._prunin[,, atBorithm t,erves as an example of a non-numerical app[[cati.on i.n
this thesi,s. The [;eqt_ent(at alp,oritllm is fi,rst analyzed, and i,t i,s shown that the branchi,np,
factor of the w--_ prtmi.np, alp,orithm for a uniform p,ame tree of dep,ree n Rrow.'., with n as
O(n/ln n). Thi,s confi.rms a claim by Knuth and Moore that deep cut--offs only have a
second order effect on the behavior of the aIRorithm. The results obtai,neu"i wi,th the
sequential alBorithm are then used to deri.ve an effi.cient parallel implementation of the
w../4 pruni'nB alBorithm on an asynchronou.,_ multiprocessor. An analysi,s of the parallel.
implementation wi,th k processes show.,.,, rather surpri,si.n6Ly, an i.mprovement over the
ori,Bi.nat atBori,thm by a factor larBer than k.

www.manaraa.com

v[

www.manaraa.com

viii

www.manaraa.com

To K

to Cun_Bonde

and

to my wi.fe

v_(

www.manaraa.com

www.manaraa.com

L.a quatri_.me ptan_te L,taLt ceLte du busLnessman. Cet
' homme _ta{t s_ occup_ qu'Lt ne Leva m_me pas La t_te

L'arriv_e du peti.t prLnce.

--[3onjour luL dLt cetui-c[. Votre ci.garette est
t 0etetnte.

--]roLs et deux font ci.nq. CLnq et sept douze.
Douze et troLs quLnze. Bonjour. QuLnze et sept
v[ns, t-cteux. Vin_,t-deux et six vLn_,t-huLt. Pas te
temps de ta raLtumer. Wngt-sLx et ci.nq trente-et-un.
Ouft Ca fait done cLnq cent un mitl[ons sLx cent
vi.ngt-deux mLtle sept cent trente-et-un.

--C{nq cent miLLi.on._;de quo_?

-HeLn? Tu es toujours t? CLnq cent un mi.tlLons
cle.., je ne sais plus.., j'ai teLlement de travaLU
Je _;uLs s_rLeux, too{, je ne re'amuse pas _ des
baLLvernest Deux et c:Lnqsept...

Antoine de SaLnt Exup_.ry, Le Petit Prince

LX

www.manaraa.com

www.manaraa.com

Table of contents

I Introduction

t - Introduction and motLvati.on]

2 - The desit:,,n of ali,,orithms for asynchronous muttiprocessors 5
2.1 - Correctness 7
2.2 - Effi.ciency 8

3 - Thesis overview 10

II Parallel execution of a sequenceof tasks

] - Introduction 13

2 -- The algorithm 14

3 - A speed-up measure 16

4 - Parallel pro_rmns for the algorithm and thei.r correctness] 7
4.1 - A program without criti(:al_ecti.on ' 18
4.2 - A prop, ram with critical sections 2l

5 - Speed-up ratios:. Implementation without critical section 22

6 - Speed-up ratio`';,: Implementation with critical sections ' 25

7 - Conctusion.,_ and open problems 31

Ill Asynchronous iterative methodsfor multiprocessor=

J - Introduction 33

2 - The class of asynchronous iterative methods 35
2.1 - Defi.nition of asynchronou'; iterative methods 35
2.2 - Examples and particular cases of asynchronous i.terations 37

3 -. Contractinl] operator.,;, 39
3.1 - [.ipsc. hitzian and contractin 8 operators 39
3.2 - Examples of contractin8 operators 40

4 - Converp_,encetheorem 42

5 - The cl.a,,;s of asynchronous iterative methods wi.th memory 46
5.1 - Asynchronou,._ [terati.ons with memory 47
5.2 - Examples of asynchronous iterations with memory 49

xi

www.manaraa.com

6 - On the complexity of asynchronous iterations 5]
6.1 - General. bounds: asynctlronous iterations 52
6.2 - Additiona(assumptEons: (haotic iterations 55

t

7 - Exl)erimen|al results 56

7.1 - Experimen|s with asynchronous iterations 57
7.2 - Results 58

8 -- Asynchronou,.; iterations with super-[i, near convergence 61

9 Extensions of the results 64

lO --Concl,uding remarks 65

IV On the Alpha-Beta pruningalgorithm

Part 1: The sequentialalgorithm

1.- Introduction 69

2 - Presentation and initial, properties of the t_--# pruning algorithm 71
2.1 - 1he w'-l_ procedtJre 71
2.2 -- Some.properties of the w--p pruninR algorithm 76

2.2.1 - Notations 76
2.2.2 --Condition for a node to be explored 78

3 - Number of nodes explored by the w.-/3procedure: discrete case 80
3.1 - Random uniform gamP.trees 80

• 3.2 -- Number of nodes examined: discrete case 84
3.3 - []i-valued rug trees 86

4 - Number of nodes explored by the _'-_ procedure: continuous .case 88
4.1 - Notations and pre.timinary results 89
4.2 - Number of bottom positions examined: continuous case 90
4.3 - Discrete case versus (ontinuous case 93

5 --On the branching factor of the w--/3pruning algorithm 95
5.1 - Previous resul.ts 96
5.2 - Bounds on the branching factor of the w-/_ procedure 97
5.3 -- Improved upper bound 100
5.4 - Numerical results 102

Part 2: A parallel implementationof the algorithm

6 - A parallel, Alpha--Beta pruning algorithm 105
6.| - A parallel implementation for the w.-/3pruni.ng algorithm 106
6.2 - Sorer: improvements on Pro[,,ramA 109

7 - Analy.,_is of the parallel e,'-./_pruning algorithm] 13
7.1 - Condition for a node to be examined under a partial search 113
7.2 --Average nurnl:>erof nodes expl,ored under a partial, search 114
7.3 - [he analysis of the parallel c,,.-/_pruning algorithm 117

7.3.1 - Optimal. decomposition 119
7.3.2 --]mpli.cations of the results and va|i.dity of the assumpti.ons 124

8 - Concl.usions and open problems ' 127

xii

• /

www.manaraa.com

V Experimental results with asynchronousmultiprocessors

1 - lntroductLon 131

2 - Descri,ption of the experiments 132
2.1 - "lhe envi,ronment 132
2.2 -- The problem 133

3 - Some implementat_on_ of asynchronous _terati.ons 134
3.1 - Jacobi'.s method and A,qynchronou._; Jacobi.'s method 135
3.2 - GatJss--Se[cle['s method and Asynchronous Gauss-Seidel.'s method]36
3.3 - Purely a._;ynchronou._ method 137
3.4 - Other possible implementations 138

3.4.] - Asynchronous i.terations wi.th retaxati.on 139
3.4.2 - Adaptat{ve asynchronous i.terati.ons 140

3.5 - Ort;ani,zati,on of the program 142

4 - The resuttr{ of the experiments 142
4.1 - Choice of the parameters !43

4. l.1 -Size of the ,,,ystem ' J43
4.1.2 -- Error on the _;otution vector 143
4.1.3 - Other parameters 146

4.2 - Local behavi.or of the prol',ram | 46
4.2.1 --Results of the measurements ' 146
4.2.2 -, An interpretation of the results l bl

4.3 - Global results]55

5 -- On the analysis of alBorithms for asynchronous mutt[processors 158
5.] - Synchronized algorithm,,; 160
[5.2 - Asynchronou,,; alBorithmn 163
5.3 - A compari,-,on with the experi,mental results 166

6 - Conctudi.ng remarks 168

V[Conclusion

I - A ,,_ummary of the results and their Lmpti.cati.ons 171

2 - Some top[_,.; for future researct_ ! 76

Bibliography t 79

xi.ll

www.manaraa.com

x_v

www.manaraa.com

Chapter I

Introduction

• 1 - Introduction and motivation

Parattet computers and mutt{processors offer a natural sotutLon to the

ever--Lncreasinl_ demand for computinp, power• At the sarn_ tLrne, theLr evolutLon has

brought about tile need for the development of effi.c_ent paraltet all_orLthrns. ThLs need ts

now becominl?, more and more acute since recent advances Ln computer technology have

drasticaLty reduced the cost of components, anct it Ls qui.te conceLvabte that parattet

con_puters composed of 1000 or more processors wLlt be built in the near future.

ParattetLsm Ls achLevabte in a variety of ways, as exernptifLed by the various

archi.tectures of paraltet computers already exLsti.n_. Fol.towinl_ Ftynn's ctassifLcatLon [21],

we menti.on betow only a few amens, the more Lrnportant ones. For a I]enera[overview,

Stone [57] offer,.; an Lntroductory presentati, on of parattet computer archLtecture; Kuck [36]

evaluates some parallel, rnach{ne or_,ani.zati.ons _n retati.on to theLr programmtns;; and

Enstow []9] survey,_ specLf_caLty rnuLt_processor orsanLzatLon, whLch Ls of central _nterest .

to us {n thLs thes_s.

The ILLIAC IV computer [15] is a typ{cal example of an SIMD (SLnste]nstructi.on

_tream Muttipte Data stream) machine [21]. Often referred to as an cLrr_z:yprocessor, the

IL.LIAC IV was desLp_,nedexplicitly for .,.,otv[n8 partLa[differenti.at equati.ons by the method

of fLnLte difierences (typicaity, for weather forecast). It Ls composed of 64 LdentLca[

processi.ng eternents, orsanLzed as an 8×8 array, which execute s:ynchronol_sl:y the same

www.manaraa.com

2 CHAPTER]

' i,nstruc.ti,on possi,b[y operating on different data. Tile CDC STAR-IO0 [29] and the Cray-I

computer [54] are also $]MD machi.nes in f[ynn's ctassi.ficati.on. They are often referred to

as l_ector compttters, and they [;ain tt_ei,r effi.ci,ency by provi,din8 for vector-type

i.nstructi,ons, capabte of executi,ng in paral(et the same operati,on on air etements of a

variable size vector rather than on a si,ngl.e scalar. Pi,.peti,ned computers and associ,ati.ve

processors also batons to the crass of SIMD machi,nes; a genera[presentation of theLr
I

archi,tectures can be found i,n [l 2] and [65], respecti,vety.

Thi,s thesi,s i,s concerned wi,th another type of parattei, computer, ctassi,fi,ed by Ftynn

as an MIMD (Muitipl.e]nstructi,on stream MuLt[pl.e Data stream) machi,ne [21]. Throughout

the thesi,s, this type of computer wi,l.[be referred to as an as:ynchronotts mttltiprocessor,

si,nce we thi,nk thi,s term better reftects the vi,ew we are taki,ng here.

ExampLes of asynchronous muttiprocessors include commercial|y avaitabte computers

ti,ke the UNIVAC 1108 bi.-processor_ speci,al purpose computers ti,ke the D825 [1], produced

for command and control, mil.i,tary appl.icati,ons; and research products l.i,ke C.mmp [63] and

Cm* [59]. C.mmp and Cm* have been (and are being) buitt at Carnegi.e-MeUon Uni,vers[ty

usi,ng mini,-.processor,.;, sliºghtl.y modifi,ed versi,ons of the DEC PDP-| | and the DEC l.Sl-I 1.

Whi,te C_.mmp _s truly a mu[tiprocessor, in that each processor has a direct access to each

memory bank through a cross-po[[nt swi,tch, Cm* coul.d at.so be consi,dered as a tocat.

network, i,n whiich intercommunicati,on takes ptace between clusters (each processor,

however, c_n actually access the enti,re common memory through a sophiisti,cated address

mechanism [30], [59]).

We do not i,ntend to go i,nto the cletai,l.s of the archi,tecture of any asynchronous

multi`processors. (See [19] for a general, survey of the archi,tectures of exi,sting

muttiprocessors.) For the purpose of the thesi,s, i,t i,s suffi,¢ient to consi,cler an

asynchronou,.; muttiprocessor as composed of a set of indepettdent processors sharing a

common memory, each processor being able to carry out the executi,on of Lts own program.

In thi,s respect the executi,on of programs on an async:hronous muLti,processor, unl.[ke on an

www.manaraa.com

INI'RODUCTION 3

SIMD machine, is made [n a completely asynchronous fashion and takes on a chaotic

appearance. This is especially lrtle since the processors are not necessarily of the same

type, as is the case with C.mmp (composed of both PDP-11/20 and PDP-! 1/40), and could

actually have drastically different characteristics, parlicutarly in speeds. Another reason

is that acce._;s to memory is not necessarily uniform, as is the case with Cm_. Notice that,

in this broad sense, a network of computers could be viewed as an asynchronous

mul,tiprocessor as welt since, in this case, the computers can stilt be considered to share a

common memory, atthoush very indirectly. As a matter of fact, the all, or[thins that we

propose in this thesis for asynchronous multiprocessors are also welt suited for

implementation over a network, especially if the time required for the intercommunication

between the computers is not too hii_h compared to the time required by the computation

on each computer.

After this very brief presentation of parallel computer architecture, let us now turn

' our attention to the issue of parallel all, or[thins. From an all_orithmic point of view, SIMD

machines have been the most widely studied to date, and particul,arly the ILLIAC IV type of

computer. Due to it,.; specific structure, the efficient uti.tization of an array processor

requires that a problem be decomposed into identical sut)tasks which communicate amen 8

each other in some re_u_r fashion, and the rani_e of possible appl.ications is, therefore,

limited (mai.nly to linear algebra oriented problems). Numerous examples of paral,l,el.
i

algorithms for SIMD machines in the area of numeric:at l,[near all_ebra can be found in a

recent survey by Hetler [27]. Examples of non-numerical, alf_.orlthms can be found, for

instance, in [9], [58], and [6!].

BeEnB composed of a set of independent processors, an asynchronous mul,ti.pro¢:essor

al,tow.,., for Breater fl.exibility in i.ts prosrammin B than does an SIMD machine. AlthouBh

asynchronou,._ multiprocessors have now been in existence for several years (the D825 [1],

in fact, dates back to the early 60's), very tittle has been published so far on how to

desiBn parallel, alsorithms that run efficiently on an asynchronous multiprocessor. Until

www.manaraa.com

4 Ct4APTER]

re(entl,y, emphasis in the desit_n of parallel, algorithms for mul.tiprocessors has been

placed mainly on techniques for recognizing, the intrinsi_ p_r(_llel_'.sn_ of existi.n 8 sequential.

algorithms rather than on the direct con,._tructi.on of parallel algorithms. Some of these

techniques have-actually been implemented in a version of the At8oi.--68 compi.i,er runni.ng

on Cmx [28]. Typically, the transformation of a sequential program is accomplished by

i.clenti.fyinl_ independent subtasks withi.n the prol_ram and introduci.ng precedence relations

between them; a paral.lel, prop_,ram then (:an execute the various subtasks accordinl_ to the

I_raph of the relations. However, a paral.iell program resullti.n¢ directl,y from this automatic

transformation requires con.qiderabl,e communication and extensive synchronization to

control, the fi,ow of execution of the various subtasks. Thi.s ulltimatei,y reduces its

efficiency.

In the domain of numeri¢:al analysi.s, a different approach in desil]nin B al,Borithms for

asynchronou.,; mul,tipro(essor.,., has proved to be more fruitful. Rather than adapting

existing sequential al.l_orithmn, Chazan and Miranker [11] have presented a cllass of

iterative methods for the solution of a linear system of equations which takes i,nto account

the asynchronous nature of multiprocessors.

Essentially initiated by a recent paper by Kung [37], a systemati.c study is now

un¢ter way (,o expl,ore some of the unique issues raised specifically by the desil_n and the

analy.qis of parallel alg,orithm_ for asynchronous muttiprocessors. This study certainl,y

benefits from an extensive research done on a different, but rel.ated, area concerni.n_-

time-shared processors rather than true mul,tiprocessors. However, results in the latter

area deal, mostl,y with special probl,em_ typical,l,y encontered in time.--sharing or

mul.tiprop.,ramminl_ operat_n[,, ,..ys|em_, e. [_., resource al,l,ocation, co-ordinati.on of

independent devices (typi.¢:al.i,y, I,/0 devices), and they address directly the issue of

co--operation of processes without addressinl] l_eneral, issues, such as problem

decomposition, involved with l,he de._;i.L:,.nof mul.tiprocessor allgoritt'lms. (See, for

example, [16] for an earlly presentation of this area, and [2] for some examples of typical,

problem.,.,.)

www.manaraa.com

INIRODUCTION 5
I i

In addition to [37], a few examples of typical algorithm.,., for mutti,processor_ have

already appeared, and they itl.ustrate several important notions uni,que in their design [6],

[38], [39], [40] and in their analy._is [3], [4], [8], [51].

Thi,s thesis is concerned specLfi.catly with the design and the analysis of parallel

alt:,.orithms for asynchronous muttiprocessors. In Section 2 of this chapter, we briefly

ctiscut_.,_ the mai,n issues involved i,n their desiBns. The remaining c:hapters of the thesi,s

study these issues in depth in several problem domains. These results are summarized in

Section 3 of thi,s chapter.

2 - The design of algorithms for asynchronous mulliprocessors

Atgorithm_ for SIMD machines and algorithm.';, for asynchronou,._ muttiprocessors are

•.;irnit.ar in principle, i.n that ttley both rely on the decomposition of a problem into subtasks

executed in parallel. This is, however, thei,r only similarity, and these two types of

'parallel al'gorithmn in Benerat present drastic differences wi,th respect to both their design

. and thei,r analy.'_is. Let us examine, in this section, some of the uni,que issues raised by

parallel algorithms for asynchronous muttiprocessors.

Most of the problems associated w(th the desiBn of parallel algorithms for

asynchronou,._ multiprocessors have been clearly exposed by KunB [37]. Throul]hout the

thesis, we u._e the notions and concepts introduced i,n his paper, and, below, we briefly

review some of the more important ones. In parti.cular,[37, p. 156]:

"We define a parallel, algorithm for multi,processors as a collection of
concurrent processes that may operate si,muttaneousty for sotv[nB a
given problem."

It is important to cti'.4i,nBuish between the notion of process, which corresponds to the

execution of a procedure or a piece of program, and the notion of processor, the physic:at

entity whi,ch carries out the execution of a process. While we have control over the

processes i,n the desiBn of a parallel algorithm, we do not usuatt.y have control over the

processors, whi,ch are administered by the operatinl] system. In particular, the same

www.manaraa.com

J

6 CHAPTER 1

process [s ndt necessarily executed I)y only one processor during, i.ts enti,re Li,fetime, and;

upon de¢i,slons of the operating system, several processors might be ass[Bned successively

to i,ts execution. As an i,mmediate con_._equence, the ti,me requi,red for the executi,on of a

proc;ess on an asynchronous multiproces.,;or can fluctuate i,n an almost unpredictable way.

There are, i,n fact, humorous rea._;ons contributing to thi,s unpredictabl,e I)ehavi,orl we

al,ready menti.oned the fact that the di.fferent processors of an asynchronous

multiprocessor might have different speeds and that the access to memory .i,s not

necessarily unlform; .,several. other features of an asynchronous multi,processor or of i.ts

envi.ronmont whi,¢:h al,so contribute to the fl_Lct.u_tions i.n the executi,on ti,me of a process

are ti,sted i.n [37].

Communicati,on i.s, very li.kel,y to be required amonl] the processes co.-dperati.ng in

the soluti,on of a prob((em.. Kung [37] regards a process as a sequence Of stcLges defi.ned

between two con.,;ecutive intet'nctior¢ poi.nts at whi.ch the process communi,cates wi, th other

processes. Parallel. alf_orithms for multiprocessors are then classifi.ed accordi,ng to the

way i,n whi,¢.h commlJnic:ati,on i,s accomplished, l,n a synchrottized parallel all_oritllt_l (or,

si,mpl,y, a .¢ynchronized a.i_orithm.) proces.,',es explºici.t(y use synchroni,zati,on pri,mittves, and,

upon compl,etion of a .,;Cage, a process may have to wait for the results of other processes

before resuming i.ts execution_ a producer-consumer type of pro8ram is a typi,cal, exampl,e

of a syt}chronized al,i]orithm. In an asyl=cht'ot=o_Ls parallel alEot'ithn= (or, si,mply, an

asyncht'oltolLt alEot'ithm) the processes communi.cate among themselves only through the

use of 81,obal variables (possibly updated wlthi,n a criti,cal, section), and, at the completi,on

of a stag, e, a process el,Chef terminates or proceeds further, wi,thout any delay, accordin8

to the current contents of the F,lobal variables. Examples of asynchronous al.l_ori,thms are

presented in the fol,l,owi,ng, chapters.

Let us now address briefly (and i,nformally) the i.ssues of correctness and of

efficiency, both of whi,ch, we feel should al,ways be dealt wi,th i,n the desiF_,n of any

all_ori,thms. These i,s.,_uesare not the only ones which shoul,d be taken i,nto account, but, i,n

www.manaraa.com

INl" RODUCTION 7

the case of parallel al_,orithm._ for asynchronous muttiprocessors, these two issues become

parti.cularly i.nteresti.n8 and i.mportant b_,cause of the a priori unpredictabte behavi.or i,n

the execution of the,.;e atEorithms. For this very reason, however, we can anti.cipate that

proving the correctness and analyzi.ng the effi.ciency of an algorithm for mutti,processor

are, Ln general, difficult tasks.

2.1 - Correctness

Correctness i,s obviou.,;ty a requi.rement for any att_,orithrn. Con.,_iderabte research

has been clone on the proof of correctness of sequentiat programs, and a detai.ted

treatment of .,;ome of the techniques avaitabte can be found, for example, i,n Di.jkstra's

recent text []7]. The_;e techniques, however, are mostly appti,cabte to sequenti.al programs

with a simple structure (with no cornplicated data structures, for instance), and thei,r

_enerati,zat[on to parallel proErams (especialty asynchronous parallel prol_rarns) i,s stilt

qui.te ti.miled.'

An early paper by Dijkstra [|6] contains the first major statement on the proof of

correctne._s of parallel prosrams. Re_earch in this area has been restricted mostly to

prov[n_, the correctnes, s of the solutions of small probterns, which could be used for the

i,mptementati.on of some mechani.sms in tar_,er paraltet prosrams (e. 8., the readers and

writers problem []3], or the producer-con_._umer scheme [26]). Several attempts have

been made only very recently to extend some of the techni,ques to the proof of

correctness of complete and more complex paraLleL prosrams [47], [20].

Despite the Lack of a format theory, we sti.L[feel. that we have 8iven wi.th every

alt:,.orithm presented in this thesis a convinc[nl_ arl_ument that i.t performs correctly. Thi,s

proof o[correctl_ess can take on very different aspects. |n Chapter 1I, for example, we 8i.ve

a proof of the correctness of a paraLleL prosrarn by verifyin8 that 8lobar variables used i.n

the prosram satisfy some property whi,ch holds durinl] the enti.re executi.on of the prosraml

thi,s Ls achieved by check{n8 the possible transitions of the 81.obat variables before and

www.manaraa.com

8 CHAPTER I

after interaction poi,nts. In some respect, the proof resembl,es more, LLnthLLs case, the

format proof of a sequential program usin_ assertions and i.nveriet_tsl this is partly due to

the simple structure of the particular parallel program we are dealt.n6 with. In Chapter Ill,

on the other hand, the proof of the correctness (and of the terminati,on) of the all_orithm

follows, directly from the theorem of conversence which is derived through techniques of

numerical anal,ysis.

2.2 - Efficiency

In the design of any al6ori,thml effi,ciency is always an important i.ssue. Since one of

the primary 6oats in the desi6n of a parall.ei, ail]orithm i,s to achi,eve better efficiency than

with a sequential algorithm, this i,ssue must be consi,dered very seriously in the case of an

aLl_orithm for asynchronous muttiprocessor.

We would l,ike to i,ttustrate bel,ow that, because of the ftuctuati,ons i,n the executi,on

times on an asynchronous multi.processor, synchronized al,t:,,ori,thms wi,l,l, l_eneral.[y show a

very poor performance. [his Ls true for several reasons. The execution time of the

synchronizati,on primitives themr, ei,ves is often very ti,me c:onsumi.ng (a typical execution

ti.me for these primitives is usual,ty on the order of a couple of hundreds of additi.ons).

Also, and most importantly, the use of synchronization implies the bl.ockinl_ of the

processes co--operat[n_ in a task, and, in turn, either causes some of the processors to be

i,dl,e or entai.ts the sw_tchi,n5 of contexts. In both cases, the use of synchronization may

reduce the paratteti,_m and decrease the speed-up that we hope to achieve by usi.n8 an

asynchronous muttiprocessor.

To i,[tu_trate this point, let us consider Jacob['s method to solve the [Lnear system of

equati.ons £i.ven by;

_, = Ax, * 6,

wllere A is an tz×tz-matrEx, and b and _ art_.n.-vectors. Let _0 be an initia[approximation too

the so[ution of thLLssy,.;tenl, .lacobi's method consi,sts of computi.ng the sequence of iterates

_, for /, = 1, 2, ..., through the recurrence:

www.manaraa.com

IN] RODUCTION 9

:_/, = ,4:_i_1 . b.

[his method is well suited for parallel computation since, at each step of the iteration, the

computations of all components can be c:arried out in parallel. For example, assuming that

n processors are available, a natural way to decompose the computation of a new iterate

is to assign to each of the n processors the (:omputation of one of the n components of the

iterate. This impleme.ntation requires, however, that at the end of each step all processes

be synchronized before they can start the computation of the next iterate. In clase all

processes take exactly the same amount of lime to compute a component, the overhead

introduced by the synchronization is reduced to the execution time of the synchronization

primitives themselves, ttowever, it follows from the discussion at the beginning of the

section that it is more realistic to assume that the time taken by a process to compute a

¢:omponent is a random variable rather than a constant. In this case the time it takes to

compute the whole set of components of a new iterate is given by the maximum of n

randoms variables. In parlicular, to 8_ve an idea, assume that the time for the computation

of any component is distributed according to the same exponential distribution with mean

', then, simple ca[cuLu,J .,;llow that the mean computing time for obtaining a new iterate is

given by Hrc_., where Hn _ I *)- * ... * n/--is the n-th harmonic number. The coeffi.cient Hr_2

represents the penalty imposed by the synchronization.

This simple example shows that the apparent parallelism in Jacobi's method for

.,;olving linear systems of equations is considerably reduced by the fact that this method

impli_citty .requires _;ynchronization at each step of the computation. In fact, it can be

shown that ti_e proportion of time wasted by the processes (while they are idle, waiting

for the completion of the Last computation) is given by:

I HI * H2 * "'" * /-In-/ -- 1-_-~ I --_--
n t_ln H n In n

and tends to I as n tends to infinity, which means that the processes ere almost always idle

u/cLitin g for each other!

This example also shows that, when programming an asynchronous multi.proc:essor_

www.manaraa.com

] 0 CHAPTER l

the probl.eni of the ftuctuati,onr; in the execution tiimes requi.res much attention, and that

synchronization should be used very carefully. In particular, the desi,gn of parallel.

programs for asynchronou.,_ mul.tiproces_._ors should take into account the fact that the

various processors execute thei.r programs indepe.nder_tLy and possi,bly at very different

speeds, and that, therefore, communi,cation among the processes co-operati,ng in a task

should be reduced to a strict minimum.

3 - Thesi's overview

This thesis explores the issues raised by time clesi,gn and the analysis of parallel

att_ori,thms for asynchronou,.; mutti,proces._;ors. The various noti,ons and concepts involved

with these aigorithmr_ are illu_._trated by consi.dering very diverse problem areas for

numerical as well a._ non-numeri,ca[appiicati,ons. The thesis demonstrates, in particular,

that asynchronous muttiprocessors can be used very effectively in different problem

domains, prov((ded that appropriate ai_ori,thms are used. The thesis also illustrates

various techniques useful in the analysis of such atl_orithms. The remaining chapters are

briefly summarized below.

We have just shown, in Secti,on 2.2, thal the fluctuations i,n the execution times of

programs that are run on an asynchronous multi.processor could cause a very important

degradation in the performance of synchronized algorithms, even for a problem whi_.h is, a

pri,ori,, well suited for parallel, impiementati,on. In Chapter II, we show that we have the

reverse phenomenon with a.,.,ynchronous ail_ori.thm_, even for a purely sequential problem.

Namely, F,iven a sequence of tasks to be performed serially, we propose an asynchronous

algorithm to accelerate the execution of the tasks on an asynchronous multi,processor

wi,thout introducin 8 paralleli,sm withi,n the tasks but only by tok_ni_ ad_p_ntaEe of

J'h_ct_L_tions in the ex.ec_Lt_on times. W_, i,,ive a parallel program requi,ring no critic:at

._;ection to implement the ati]orithm, and we prove i,ts correctness. We also 8i.ve a

spacew((se more efficient implementati,on, which requi,res the use of critical secti.ons. We

www.manaraa.com

]NI REDUCTION I!

then present an analy.,_is for both implementations to estimate the speed-up achievable

with the ParaLleL algorithm, and we show that, when the execution times are exponentially

distributed and no critical section is used, the algorithm with k processes yields a

speed-uP of order V_-.

In Chapter Ill, we introduce the class of asyl_chror_olLs iteratilpe methotls for solving a

(linear or non-Linear) sy,,_tem of equations.. We identify existing iterative methods in terms

of asynchronous iterations, and we propose new schemes corresponding to a purely

asynchronou.,_ algorithm (with no synchronization between the co--operating processes).

We give a sufficient condition (satisfied in most practical application,_) to guaran|ee the
, ,

convergence of any asynchronous iterations; and extend the results to' ihctude

o_s_,tmhrotzot_$ Lter_tit;e n_ethocls with nzem.orx. We then evaluate asynchronous iterative

methods from a computational point of view; we derive bounds for the efficiency and

briefly compare the bounds with experimental results (see Chapter V).

Chapter IV deals with the w../_ prunin6 asorithm. In the first part of Chapter IV, we

analyze the sequential w.-_pruning algorithm, usin6 the number of terminal nodes

examined by the aiF.,orithm as the cost measure. The analysis takes into account both

.,.,haLlow and deep cut--offs, and we also consider the possibility of ties between terminal

positions: specifically, we assume that all bottom values are independent identically
p

distributed random variables drawn from adiscrete probability distribution. We show that

the worst ca,_e of the al6orithm can be achieved even when only two distinct values are

assisned to the terminal nodes, and we deduce that the branchinl_ factor of the

--/ prunin6 al6orithm in a uniform 6ame tree of de6ree t_ grows with n as @(nAn tz),

therefore confirmi.n6 a claim by Knulh and Moore [35] that deep cut-offs only have a

second order effect on the behavior of the aL6orithm.

In the second part of Chapter IV, we propose a paraLLeL implementation of the

_../3 pruning al6orithm requirin6 very tittle communication between the processes. In the

paraLLeL scheme, the processes work independently by searching for the solution of the

www.manaraa.com

12 CHAPTER I
J

game tree over disjoi.nt subi.ntervals. We develop an analysts of the paratl.et atE,,orLthm,

from which i,t fotl,ows that tile parail.et i,mp[ementati.on wi.th k processes shows an

i.mprovernent over the ,.;equentiat ce.-_ pruni,ni_ att]orithm by a factor tarl_er than k for k .- 2

or 3. Thi,s I.eads to the rather surprising discovery that the sequenti,at _'-/_ pruning

albert,thin [s not opti,ma[.

Ill Chapter V, we present the resutt_ of measurements performed by runnin8 ._;everat

asynchronous i,terations (introduced [n Chapter]11) on C.mmp [63], an asynchronous

mutti,proces_Jor at Carnesi,e--Me.tton Un[v(_rsity. These experi,ments have proved to be an

i.nvatuabl,e tool, for provi.din8 us wi,th some i.nsit_ht i.nto the behavi.or of parattel, al,t_orLthms,

and, i,n particutar, they constitute a ctear i,ttustrati,on of the advantage of purety

asynchronou_ aiF,orithm.,;, over synchronized alsorithm_.

In Chapter V], we show how the cta,.;sica[toots of queuei,n8 theory can be appti,ed to

the anatysis of the performance of parail,et att_orithms for asynchronous mul,ti,processors,

.and, i.n part i.cutar, we devel,op a si,mpte queuei.n 8 mode[to account for the behavi.or of a

paratte[prosram which u,.;es critical secti,ons. We then compare the anaiyti,cat resutts

alert,red from the rondel, with the experimentat results presented i.n Chapter V, and the

comparison shows an excettent al_reement.

In the Last chapter, we summarize the princi.pat results of the thesi,s, menti,on some

possi,bl.e extensions and 8i,ve some concl,udi.n8 remarks. We atso present some topi.cs for

future research.

www.manaraa.com

J

Chapter II
i

Parallel Execution of a Sequence of Tasks

on an Asynchronous Multiprocessor

1 - Introduction

We are _nterested _n the design and analys_s of paraltet atsorithms for asynchronous

mutt_processors such as C.mmp [63] or Cm* [59]. For any 8_ven task, the task executi.on

t_me on such a sy._tem is dependent, upon the properti.es of the operating system, effects

of other users, processor-memory i.ntererence, anct many other factors. As a resu|t, i.t ts

necessary to assume that task execution times are random variabtes rather than constants.

(See Chapter V for e×peri.mentat results supporti.ng this assumpti.on.) In this chapter we

propose a novel, way of usi.ng asynchronous muttiprocessors, whi.ch takes advantage of

ftuctuati.ons tn task execut{on ti.mes. We wU.t present our resutt as a sotuti.on to the

problem of executi, nga sequence of n tasks tuj, ..., u)n under the fottowi.ng concl[t_ons:

CI. For i = 2 , n, task wi c:annot be started before the completion of task uJi_ !

(_. e., the tasks are ti,neariy ordered).

C2. For /. = 1, ..,, n, no parallelism can be uti_t_zed in the executi.on of task tu/, (i.. e.,

we are' not a|towed to decompose a task).

C3. The executi.on t{me of a ta,_;k i,s a random var'tabte rather than a constant.

(Thi.s condi.ti.on corresponds to the asynchronous nature of the multi.processor.)

We wilt view a paratlet algorithm for asynchronous multiprocessors as a cotlecti.on

of asyf_chronous processes whix:h communi.cate among each other through the use of gtoba[

13

www.manaraa.com

14 CHAPTER |I

variables. Such an algorithm wilt be defined by gi.vingthe procedure each of i.ts

processes executes when assi4lned to a processor. While attalyzing the alllori.thnz, use wilt

always assttme that a processor is auadable for any of the mLrtnable processes of the

alilorithnz. (See Kung [:37] for a general discussion of asynchronous parallel algorithms.)

In Section 2 we gi.ve an algorithm which uses k _ I asynchronous processes to sol.re

the problem. The algorithm is i.nteresting because at most one process is doing useful

work at any given time. Nevertheless, by taking advantage of condition C3, the mean

executi.on ti.me is tess for k > 1 than for k = 1, i.. e., a speed-up i.s achi.eved.

As an example, consider the computation of x 1, ..., _n defined by

x.i+ I = p(x.i. , ..., _.i._d) ,

where _'0, Z-l, "", Z-d are given and p is some iteration function. Let tui. 1 be the task of

computing p(x.i,...,x.i_d). Our algorithm could be used to execute tasks w1, ..., wn, whi,ch i.s

equivalent to evaluating x.1, ..., _n'

p

The speed-up rati.o Skin)of a parallel algorithm using k processes i,s dell,ned i,n

Secti.on 3, and some preliminary results are proved there. In Section 4 we gi.ve programs

to implement our algorithm both with and without critical sections and prove i,nformatty

thei.r correctness. In Section 5 we consider the i.mplementation without critical sections,

and obtain an analyti.c expression for the speed-up under certain assumptions (AI and A2

of Secti,on 5). For large n and k, our result is Skin) ~ Vrff'k/_r. In Secti.on 6 we consider the

imptementati,on which uses critical sections. Here the analysis is more di,ffi,cutt, and we

can obtain analytic results only for k < 2. Some conclusions and open problems are stated

i,n Section 7.

2 - The algorithm

For each positive i.nteger h, we define an atgorithm with k processes for executing

tasks Wl, ..., uJn under conditi,ons C! and (;2 stated tn the preceding secti.on. The algorithm

i,s speci,f[ed as fottows:

www.manaraa.com

PARAI.LEL EXECUTION OF A SEQUENCE OF TASKS 15

Whenever a process, P, i.s ready to execute a task,

(i.) i.f no task has yet been completed by any process, process P starts executi.ng

task w 1,

(i.i.) otherwise, if the I.a.,_ttask wt_ has not yet been compl.eted by any process,

process P starts executing a ta.,;k which is unfinished and ready for execution.

For si.mplicity, we wit[assume that no two tasks are completed at the same ti.me. Then,

due to the Linear ordering of the tasks, condition (iL) defines without ambiguity a unique

task to be executed by process P.

Let t 1, t 2, t 3, ... with t i < ti.+l be the times of task completion by the processes. The

.diagram of Figure 2.1 illustrates a possible scheduling of the tasks when they are

executed by the algorithm with three processes.

w I w 2. w 3 w4 w6 w8
P I t I t I I ', --

t I t 2 t6 tlO t15

w I w3 w4 w 5 w6 w 8
P2 I I t I t I

t 4 t5 t 7 tll t14

w I w3 w 5 w6 w7 w 8

P3 I t |-'t _
t 3 t8 t 9 t12 t13

Figure 2.1 - A possible task scheduling with three processes

Note that, when proce.,;s P3 finishes task w 3 at time tS, process P2 has already completed

task u/4. Thu_;, after P3 completes w3, i.t starts executi.ng w 5 rather than w 4. Task w 4 is

_;ki.pped by P3" Similarly, |asks w5 and w 7 are skipped by PI, and tasks w 2 and w 7 by P2"

After any one of the three processes has executed six tasks, tasks w I through w 8 rather

than tasks tuj through w 6 are completed. A speed-up has been achieved!

Ob.,.,erve that at any given time at most one process is doi.ng work useful for later

computation. With respect to the schedlJting given by Figure 2.1, the time intervals on

which procegses are doing useful computations are indicated i.n Figure 2.2.

www.manaraa.com

16 CHAPTER ||

w I w 2
P1 1 I I...

t! t2

tu3 tu4
P2 =

t4 t5 t7

tu5 w6 w7
Pa ... 4---I I----4-...

t8 t 9 t12 t13

Figure 2.2 - Time intervals on which processes are doing useful work

Thus the speed-up i.s not achieved by sharing work among the processes,, but is

achieved by taking adt_antage of fluctuations in the execution times.

3 - A speed-up measure

Consider the algorithm with k processes as specified in the preceding section. The

algorithm is said to be the sequential ail_orithm i.f k = I and to be a parallel algorithm i.f

k > 1. Let Tk(n) be the time to execute tasks tuj, ..., tun by the algorithm with k processes.

Let Tk(n) be the mean of the random variable Tk(n). We define the speed-up ratio of the

a[goritt_m with k processes to be

Skin) = 7i(n) / Tk(n).

For each k and for each execution of the algorithm with k processes, we define sk,i

to be the time of tile [irst completion of task w i, and define Sk,0 =-O. For example, with

respect to the scheduti.ng of Figure 2.1, w_th k = 3, we have:

s3,! = tl' s3,2 = t2' s3,3 = ts' s3,4 = t7'

' s3,5 = t 9, s3,6 = tI2, s3,7 = t13

The foil.owing theorem describes the relation between {Sk,i} and {ti} in term.,., of the

scheduling of the tasks. This theorem is important in Sections 5 and 6 for computing

speed-up ratios.

°

www.manaraa.com

PARALLEL EXFCUIION OF A SEQUENCE OF TASKS 17

Theorem 3.1 ',

Suppose that Sk,_ = t r with I _ i _;n-J. Then Sk,i+ l =, tr+ j for some I s; j _; k if

and only .if

Ca) tile j processes completing ta,.;ks at times t r, tr+j, ..., tr+j_ j are att distinct, and

(b) the process completing task wi+ 1 at time tr+ j is one of the j processes

mentioned in Ca).

Proof:

We wilt only prove the necessary condition since tile proof for the suffi.cient/

condition is similar.

o

Suppose that some process P completes two tasks at times tr. h and tr,n= for

0 ._ h < nz _ j.-J. Then, since at time tr, h task w_ has already been completed, the task

completed at time tr,m. by process P must be wi. 1. This contradicts the fact that wi,j is

completed for the first time at time tr. j, .-;ince tr. m < tr. j. This proves Ca).

Let P be the process completing ta,.;k w_, l , for the first time, at time tr. j. Suppose

that P does not complete any task in the interval [t r, tr+j_j]. Then the task completed by

P at time tr. j must be started before time tr. But at any time before tr, task w i is not

completed yet. Hence any task started before time t r cannot be wi, j. In particu[ar, the

task completed by P at time tr. j cannot be w_. 1. This contradiction proves (b). II

For i. = J, ..., n, let t:k(Z) be the random variable representi.ng the quantity

Sk,_ - Sk,L_1. Then, since Tk(n) ,.. Sk,n, we have

Tk(n) = t:k(l) + _k(2) + ... + _.k(n). ' (3.1)

Equation (3.1) will be used tater to compute Tk(n), which is needed for evaluating the

speed-up ratio Sk(n).

4 - Parallel programs for the algorithm and their correctness

We gi.w: two progrm_ to implement the algorithm with k processes: one without

critic.at sections and one with critical sections.

www.manaraa.com

18 CHAPTER II

•4.1 - A program without critical section.

Program A:

global. !ntet_eLr (or rear) arr__ l[][l:r_]l

p,toba| l)ootean array M[Zm+I];

lnLttattzati.on:

fo__r.rm '= I to n,l do M[m] :=, false;

start processes Pj, ..., Pk

end

Process P j:

b_e_e/,,_Ln.!.nteef'_r re,j;

mj := 1;

white M[mj] do_ mj := m,j + f; (4.1)

white mj _ n (.log. (4.2)

perform task win.i ; (4.3)IV

wri.te the output of task tumj on U[n=j]_ (4.4)

M[n_j] -= true; (4.5)

white M[mj] d.o_mj :-- mj +] (4.6)

encl

end
o

Assume that the la.,_ks are. not all.owed to after the array M and integers mj. We wttt

prove that Program A i.s correct in the foitowi.ng sen.,.,e:

PI. For m = 2, ..., n, task w m is executed onty [f task uJm_ l has been fi.n[shed and

its output has been written on U[n=-l].

P2. For j ,-- l, ..., k, process Pj can execute the Loops at (4.1), (4.2) and (4.6) at

most n tLmes.

www.manaraa.com

PARAi.I_EL EXECLITION OF A sEQUENCE OF TASKS] 9

P3. AtL the ta.,;ks Wl, ..., Wn_ wLlt have been compteted at the time when any one of

the processes PI,-", Pk terminates its exec:ution. ,

Property P2 8uarantees that the program wUt terminate. (Note that there Ls no

possi.bi.tLty of deadlocks Ln the prol_ram.) Property P] ensures that the tLnear order[n8

requi.rement of the executLons of the ta._;ksi.s mai.nta_ned, and property P3 imptLes that

when the prosram terminates art the tasks are compteted.

Lemma 4. l :

(i) For m = 1..... n, Lf M[m] L._set to true, Lt remai.ns true afterwards.

(i.i.) After bei.ng i.ni.tLati.zed to fat.%_e,M[n+l] i.s never modifi.ed.

Proof:

After _nLtiali.zat_on, M can only be modified throuF, h statement (4,5) executed by

some process Pj. But, when entering the niain whi.le-I.oop (starti.n 8 wi.th statement (4.2)),

n_j sat_sfi.es the condit[on n=j _;n and i.s not modified before execution of (4.5). Therefore

Mitt+!] can never be modified. I

Lemma 4.2;

For j = 1, ..., k, i.f n=j has the vatue m > 2, then M[m-l] i.s t_ruff.

Proof:

Suppose that n=j = n_ with nt _ 2 at ti.me t. If n=j was i,ncremented by I to the value

n_ in,.;i.¢le the whi.te _;tatement (4.1) or (4.6), then the test of M[mj] bei.ng tru.__eewi.th

m.j = m..-I must have been .,_atisfied. Hence M[m-J] was tru___eat some t_me before t. Thus,

by Lemma 4.1, M[m.-l] i.s true at time t. I

Lemma 4.3,

For n_ _ 2, ..., n, i.f M[m] _s tru_._ee,then hf[m-l] i.s true.

Proot:

Suppo.'.,e that M[m.] Ls true. Then M{n_] must have been assi.Rned to t rtLe through

i.nstructi.on (4.5) by .,.,omP. process Pj w{th n=j havi,ng the vatue m. Therefore, by

Lemma 4.2, M[n_-l] i.s true. I

www.manaraa.com

20 CHAPTER II

Lemma 4.4:

!

For nz = 1, ..., n, i.f M[m] i.s true, then task Wnl is completed and its output i.s on

U[m,].

Proof:

Suppose that M[m] ts true. Then M[m] must have been assi.Rned to tr.ue throuRh

instruction (4.5) by ._;orne process Pj w(th mj having the value n:. Since Pj executes

instruction (4.5) only after the (:ompietion of task Wn=j and since n=j is not modified in

between, we conclude that task Wnz is completed. I

We are now able to prove the foIlowin8theorem.

Theorem 4.1 :

Prol_ram A sati_sfi.es properti.es PI, P2 and P3.

Proof:

Suppose that process F'j i.s execut_nE task uJn= w_th n=- m j> 2. Then, by

Lemma 4.2, hf[n_-J] i.s true, and hence, by i.emma 4.4, task UJnt._j i.s completed and i.ts

output L._on/J[n=-l]. We conclude that Prop,ram A satisfies property PI. '

Property P2 follow'., from statement (i.i.) of Lemma 4.1 since n=j i.s i.ncremented by !

i.n each executi, on of a loop.

Suppose that a process, _ay process P j, terminates. Thi.s happens only when

n_j = r_*J. Thus, by Lemma 4.2, Mini i.s true for all n_ = J, ..., n. Therefore, by t.emma 4.4,

all ta.,_ks are completed. We have shown that Program A also satEsf_es property P3. I

Prol_ram A i.s very ret_al)te in the foltowi.n 8 sense. Property P3 i.mpties that, even i.f

some proces._;es fai't (for rea.,;ons external to the alEorEthm: e. 8-, crash of the processors

executin8 the processes), the prol_ram may stEtt conti.nue executEn8 tasks and eventually

complete all ta.,;ks, provided that there remains at |east one active process. We well not

pur.,;ue .this retiabU{ty _ssue any further, though we believe it i.s Lmportant.

www.manaraa.com

PAt_AI.I.EL EXECUTION OF A SEQUENCE OF TASKS 2 !

4.2 - A proKram with critical soction_

For prol)l,ems whore we are only interested.in the output of the Last task WrL, the

use of the gl,obal arrays U[J:tz] and M[I:I_,J] in Program A can be avoLdect at the expense

of using critical sections.

We wLi,L i.tl,ustrate the idea with tile following example. ConsLcler the prol)tem of

generati.np_, the n-th iterate _t= by _/, := p(__j) given the initial iterate _'0" Suppose that

we u._;e Program A. Then, corrf:sponcting to the gl,obat array (ill:n], we have the 81,obat

array _.[O:t_] where _.[i] keeps the value of the L-th iterate, and instructions (4.3) and (4.4)

bec.or_e

x.[mj] :- p(x.[m,j-1,]) .

Note that we only need _.[t=]. The Ll._;eof the array x.[O:tt] i.s wasteful. Ln space, and might

even be impractical (e. g., when n Ls Large or when the elements :z[O], ..., ;c[rL] are

thernr_el,ves vectors or complicated structures). The fell,owing program el,Lminates this

probl.em. ,

Program B:

Etobat Lnt__e_e_.rm; p,toba[Fea___t_.;

InLtial._zatLon:

be_e_n_

m:= l; _ :,, _'0;

start processes PI, "", Pk

end

www.manaraa.com

22 CHAPTER II

Process P]:

i.nte_ermj; rea.__.J.t:),j.;

{mj ..-- m; yj = _}; (4,7)

whi[e mj < n do

yj "= p(yj);

{!.f.Ii = ._ t_he__n.n(in:= mj; x. :,, y/)}; (4.8)

{mj := m; yj :- _} (4.9)

end

en___dd

It i,s cruci,a| to a,.+sume that the statements enctosed wi,thi,n a pair of curry brackets

(ti,nes (4.7), (4,8) and (4.9)) are programmed as crEttcat secti,ons. (As a matter of fact, the

two li.nes (4.8) and (4.9) can be programmed as one criti.ca| section.) Wi.th this assumption

i.t is possibl.e to prove the correctness of the above program. The proof i.s based on the

observation that the _tobal variai)te nL i,s a non-decreasing functi,on of ti,me whi.ch takes on

art integer values between 1 and n+l. The proof i.s tel.at(very easy and hence i.s omitted

here.

Note that, as was atready mentioned, x. and yj may represent i,arge amount of data.

Hence the execution of _ := yj or y):,,_. may take a si,BnLfi,cant amount of ti.me. After

presenti.ng, in Secti.on B, an analyses for programs whi,ch do not have critical secti.ons, we

wi,tl, gi.ve, i.n Secti,on 6, an analyses for programs whi.ch do have critics| secti.ons.

5 - Speed-up ratios: Implementations without critical sections

Let ti, j be the random variable rep|-esenti.ng the t[rne to execute task w i by process

Pj. In this and the nex, t section, we asstttPt.ethat the ti, j, for i --. 1, n and j = 1, ..., k, are

i.ndependent and i,denticalLy distributed. The assumption is reasonab|e when art tasks are

of the same_:omptexity and executed by i,denttcat processors. We wi.|t use T to denote shy

of the random variabl.es ti,j, and use ¢" to denote the mean of T.
t

www.manaraa.com

PARAliEL EXECUTIONOF A SEQUENCEOF TASKS 23

It is easy to obtain 7"l(n). By equation (3.1) with k - 1, we have:

Tl(t_) = _1(1) , _1(2) • ... • _ l(n) .

Since, in this case, the cj(i) are independent and ident[ca[ty distributed with mean _', we

deduce that

TI(,_) = ,_ _. (5.1)

In the rest of the chapter, in order to evaluate 7k(n), we impose the fot[ow[ng

further assumptions:

AI. Art processes start at the same time It = O. (l. eI at to a|t the k processes start
D

with the executi.on of task wl.)

A2. The ranciom variabte T is exponentiat[y distributed with mean _'.

We observe that by tile independence of the ti, j and by assumption A2 the

quantLties Ck(i,), i = I, ..., n, are independent random variables. It foltows, from

equation (3.1), and a.q.,_umptionA2, that

7--k(n) = p,k(I) + _k(2) + ... + _k(n) , (5.2)

whore _k(i)is the mean of _k(_).

In addition, by assumption At, _.k(l) is g_ven by the m_nimum of k random variabtes

distributed as T. Since T is exponent_atty clistributed, the minimum has the mean:

. (5.3)k

We now consider _k(i+l) for i =], ..., n-l. Define the distribution probabiLi_ty Pk,j,

j ---], 2, ..., as foitow_. (We use here the same notation as i.n Secti.on 3.) Let Pk,j be the

probability that "_k,i+] "- tr*j' given that "_k,i= tr for some r. }_nce for j ,.], ..., k, Pk,j {s

the probabiiity that (onditions (a) and (b) of Theorem 3.| hold. Using the same argument

as used {n the proof of Theorem 3.|, it i_, easy to show that Pk,j = 0 [f j > k. In addition,

assumption A2 impties that, from thn memory.-les_ property of the exponential

distribution, Pk,j [s independent of i and r. We have:

www.manaraa.com

24 CHAPTER II

tr. l - t r with probabitity Pk,l ,

(tr, j - tr) + (tr_ 2 - tr. j) with probabdity Pk,2 '
k(+l) = (5.4)

l . • . • • •(tr,.l - t r) • ... + (tr, k - tr,k_ l) with probabiti.ty Pk,k •

S_nce by assumptEon A2 the random variabtes tr, j --t r, r = 1, 2, ..., are i.ndependent (and

i.denti.catty distri.buted) ran(tom varial)tes w(th mean _:, we derive from equation (5.4) that,

for _ = 1, ..., n-l, the mean of t:,k(_,l) is given by:

, l.<;jgk Pk,j = k l_;jgk J'Pj,k

By equations (5.2), (5.3) and (5.5), we obta(n that

- I c (1. (,_.-1) Z J.Pj,k) (5.6)Tk(n) - k l._j_k "

lo evaluate 7:k(n), we need to know the foltowing quanti.ty:

Nk - Z
1_j::k J'pJ,k •

Lernma 5.1 :

For j- I, ..., k:

j.ld (5.7)

Pj, k kJ* I (k-j)_

Proof:

We fi.r.,.,t observe that, by assumption A2, for r = 1, 2 , any one of the k processes

i.s equatty tikety to comptete a task at time tr. Suppose that Sk,i, = t r and Sk,i+ j =, tr. j.

"[hen, by condition (a) of Theorem 3.1, the j processes compteti.ng tasks at time tr, tr+ 1, ...,

tr.j_ J l_re different. Thi.s occur.,; w(th probabltity

_k ...,, ,, (5.8)
k I, J, kJ(k--/;V"

II.,

Moreover, by tendEr(on (b) of Theorem 3.1, the process comptetEng a task at ti.me r*j must

be one of the j processes menti.oned above. This occurs with probab[ttty ilk. Hence the

probabUi.ty that Sk, i -- t r and Sk,i.+l = tr, j i.s:

i × k_ I
k kJ(k-))_

The probtem of computing the leading term_ in the asymptotic series for Nk _s

rather diffi.cutt. Fortunately, some known resutts can be used here. Define

Qk "" Z k!
l_j_k kJ(k-))l

www.manaraa.com

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 25

We are'now able to estabLish the foLLowing.

Lemma 5.2 =

Nk " Ok"

Proof:

' We have

Nk ,,, Z _ ,;Zj, [k-(k-j)].pk,Jl:_j_k J'Pk,j I

= k _._ - Z (k-j).pk, jl_j.,;k Pk,j l<j.,k

= X _j_;k__ _ j_ ___j.k!l_;j:;k kJ(k-j)1 I._ --1 kJ+l(k_j.l)l

= Z_ _i.k!_ _ Z_ Ei-l)k_
l_j:;k kJ(k-j)_ l_j,:k kJ(k_j) 1

. Z k! I
1_j_kkY(k-j)l

The [eadi.ngterms in the asymptot(c seriesforQk are known [34,p. I|8]:

I + 1 "_- + 0(._-)ok _- /-_- _ _,/-_.-_ •
ttence, by equation.'., (5.1), (.%.6) and Lemma 5.2, we have the foltowi.ng theorem.

Theorem 5. I

Using k processes, the speed-up ratio is given by

n.k._-(_

v/c.n. = I + (n.-l)N k
p

where

Asymptot(cai[y, when both n and k are large, we obtain'

S_(n) ~ /2.kg_~ 0.790 ,/k .

6 - Speed-up ratios: Implementationswith critical sections

In this section, we analyze speecl--up ratios achievable by the algorithms when they

are implemented wi.th critical sections.

www.manaraa.com

26 Ct4h,PTER 1t

• The diagram of Figure 6.1 illustrates a portion of a possible scheduling of the tasks

by the parallel algorithm wi.th two proce.,_.,;es.
I .

tLi _i tLi,3 ui+3 ui+5 _i45 tti._6

... _ _, _¢¢e,_ o ¢_--<,-_$-_...
t i ti_3 ti,5 ti,6

Ui+l Ui,l tti+2 ui.2 ui+4 ui,4 tti+7

... _.--_-_ o_ _,,'_.. •
ti..l ti*2 ti+4

Figure 6.1 - A possible ta.,;k ,;cheduling with two processes

In the diagram, the marks '--f--' and '--o-' indicate the sequences of time i.nstants t_i and vi,

i .-- 1, 2, ..., when a process completes a task and when the same process completes the

subsequent critical .qection. Since, at any time, only one process can execute the critical

section, a process may have to wait before entering the critical section. The periods of

waiting times are indicated by the marks ',_¢4_'. The ti.me instants t i when processes

•acttJatty enter the critical section are indicated by the marks '--6-'.

AS in the protecting .,,cotton, we as.,;ume that the time a process takes to execute a

task i.s a random variable independent of the process and of the task. Let k- be i.ts

'distribution function, and [its density function. Similarly, we assume that the ti.rne a

. process takes to execute the critical section is a random variable independent of the

process, l.et B be itsdistribution func;tion and b kts density function. Furthermore, let c

and fl denote the average execution times for a task and for the critical secti.on,

respecti.vety.

In the following we derive a general formula for evaluating the speed-up ratio

achievable by the parallel algorithm with two proces,.;es for the case when F" is an

ex.ponerttiaL di,stributiott ft_nction and B is a ltetteral distribution [t_nction.

Observe that at time t i when a process enters the critical secti.on, the second

process i.s. necessarily perform[n 8 some task (possibly just starting a task). Si.nce the

www.manaraa.com

PARAI.LEL EXECUIION OF A SEQUENCE OF TASKS 27

distributi,on function F is exponential, at time t i the remai.nin8 execution time for the task

performed by' the second process Lsdistributed according to the same distributi,on functi,on

F. Therefore the evolution of the processes, from time ti on, is i,ndependent of the past

for any distribution B. In parli.cutar, the randoni variables ti+ 1 -t/., for i : 1, 2, ..., are

independent and identically distributed, and the same holds for the random variables

_k(i.+J), for i : J, 2, ..., deft,ned in Section 3.

]n this scott,on, Let 71(n) and T2(tz) clenote the time to complete task uJn ctnd the

stzbseqaettt criti.cal section by the sequential algorithm ancl the parallel, a|gorithm wi,th two

processes, respectively. Let 7-l(n) and 7-2(n) denote thei,r means. It fotl.ows from the

above di,scussion that, for k = / and 2, we. have:

Tk(n) = _(1) , _(2) +... + "_(n) * /_, (6.1)

where the last term, _, accounts foi" the time to execute the last critical section (after the

compteti,on of task Wn).

Consider fi,rst the sequential algorithm. In this case, we simply have u(l)= _', and,

for i = 2, ..., n, _-(/.) = /q + c'. Therefore, by equation (6.1):

Tl(n) = n. (_ + t_). (6.2)

(Here we i,gnore the fact that in the sequential algorithm the criti,ca| scott,on can be

silortened, since there is no need to include synchronization primitives.)

Consider now the parallel algorithm. As with equati,on (5.3), we have:

1. (6.3)
_2(1) " 2

For j ,-- I and 2, let pj be the probability that s2,i+ 1 = tr. J, gi.ven that s2, i - t r for

some r. As in Secti.on 5, by Theorem 3.1, we obtain, for t; = 1, ..., n-l,

tr_.j - t r w_th probabi.ti.ty Pl ,
_2(i+1) - (6.4)

(tr_ 1 - tr) + (tr, 2 - tr. 1) with probabili,ty P2 ,

We have alreacly mentioned that the random variables tr. 1 - t r, r ---1, 2, ..., are independent

•anct _cldnticalty distributed. Let p denote thei,r mean.]t follows from equati,on (6.4) that

the mean of _2(i+1) is gi,ven by:

www.manaraa.com

28 CHAPTER11

2(+I) = I_.Pl + 2p.P2 =" (2-Pl).lz, (6.5)

since pl + P2 ffi 1.

The fottow(ng temma establishes the values of # and PI"

Lemma 6.1 =

Let B* denote the t.aptate transform of the distribution function B, We have;

lz =, t_ + E B*(I_) (6.6)2

/ B*'(I) (6.7)

Proof=

• We consider transiti.ons for pa,.;singfrom time t i to time ti, j. Up to a permutation of

the processes, there are three possible transitions as defined by the foil.owing diagrams:

ti. ti+j ti ti

AI: A2: A3"
• V1/11.'//_.

VI////I_.J

ti+l ti+l

where the notation of Figure 6.1 is assumed.

Let Hj_t), j .--1, 2, and 3, be the probability that transition Aj takes place and that

ti+ 1 - t i< t. We have:

HiLt) - j t [! _ F(x.)] fff b(y) _'_-y) dy dr ,
U u i

H2(t)
u

H3(t) _ _t b(_) F(_.) d_.

But we observe that H(t) .--Hilt) + H2(t) * H3(t) is the distribution function for ti+ 1 - t/. and

that the same process; enters the cri.tkal section at both times t i and ti+ ! only with

transiti.on A1. t-k_nce:

(.oo joO_lz = JO t dH(t) = [1 - tt(t)] dt ,

/o o/o - /o"b(y.f(.-,) d..Pl

from which equations (6.6) and (6.7) follow easily. III

By collecting the preceding results, we obtain the following theorem•

Ii

www.manaraa.com

PARAI.LEL EXI.CUTIONOF A SEQUENCEOF TASKS 29

Theorem 6. l,

The speed-up ratio of the parallel atgorithm with two processes is p,i.venby:

32ffL? =
(n.-l)[2 _ 2

We el.re below B*(_) for some distribution functions B.

.(i) B is exponential (with parameter 1//_)'

(ii) B is uniform over [a, b]:

R*fD- (b-._llr.

(iLl) B is the [)irac function at tile point /3:

' 8*(D=

In Fi.elure 6.2, we have plotted tile asymptotic speed-up ratio 5'2 as a function of the

ratio o_= a'/(c,/'3) for the three distributions mentioned above (in the second case, a and b

have been chosen as 1_/2 and 3/3/2, respectively).

When w tends to 0 (or /_ tends to infinity), the at_orithm approaches its worst case

performance, since the evaluations of the two processes tend to be exactly interleaved.

When o¢-- J (or /'3= 0), the critical section is non-existent and we have the results of

Section 5.

We observe from FiBure 6.2 that the best speed-up ratio is always obtained when B

is an exponential distribution (the first ¢ase). We also note that the results obtained for

the two other cases are very close to each other and close to the results obtained with

the exponential distribution. This su88ests that the results obtained with the exponential

distribution could be used as approximations to results obtained with other distributions.

www.manaraa.com

30 Ct4APTER]I

Speed-up ratio

!

1.3

0,5, _

0,4

0.3

0,2

O,J

0
0 0.2 0,4 0,6 0.8 t.O 1.2

Ratio ¢v

Ft6ure 6.2 - Speed-up ratio w_th 2 processes for various d[str[buti.ons B

We can observe from fi.Eurn 6.2 that, unti.ke the i.mplementati.on wEthout cr[ti.cat

secti,on, better speed-up is not necessaril.y achieved by us[n8 more processes, thoush we

assume that a processor i,s atways avaEtabte to each process! More preci,sety, the fi.p:,ure

www.manaraa.com

PARAI.LEL EXECUTION OF A SEQUENCE OF TASKS 31

i.ndi,cates that (when B [s an exponential distribution) i,n order to achEeve the best ,

speed-up when two processors are avail.able, one should create two processes when

> 0.586, I)ut only one "process wllen cv_ 0.586. Simil.ar results are useful i,n practi,ce,

si,nce they can be used to determine the apti,mat number of processes to create [n order to

minimize the overall execution ti.me.

7 - Conclusions and open problems

/

In recent year.,;, research _n parallel algorithmn ha,,,,dealt mostly wi,th synchroni.zed

array or vector processors such as tile ILLIAC IV or the CDC STAR, and there are very few.

results on the design and anaiy_.ds of algorithms for asynchronous multi,processors. In thi.s

chapter, we have proposed a novel method of usi,ng asynchronous multi,processors whi,ch

takes advanta6e of their asynchronous behavior. We have also presented anatyti.c

techni.ques to evaluate the performance of an asynchronous algorithm using the method.

The algorithm [s expected to achi.eve a large speed-up when the ftuctuati.ons i,n the task

executi.on ti.mes are tel.all,very tarse. Moreover, as noted in Secti,on 4, the algorithm has a

nEce retiabi.li.ty property. The same i,dea may also be used to construct other reti,abte

algorithms.

For the i.mp(ementati.on wi,th criti.cal secti,ons we obtained analyti.c resul.ts for two

processes. The results show that the parall.et algorithm using two processes is not

neces_;ar[ty faster than the.sequenti.at algori.thm, because of the cri,ti,cal ._ecti,on overheads

associ.ated wi, th the parallel algorithm. Thi.s confi,rms the practical experi.ence that the

speed--up ratio does not necessarily i.ncrease as the number of processes i.nc.reases. It

would be i,nteresti,ng to extend our anatyti.c results for more than two processes. We have

chosen to deal wi,th a simple problem by imposing the condition that the tasks are It,nearly

ordered. An interesti.ng exten,._ion would t)e to consider a set of tasks (possi.bty generated

dynamically) which are ordered by a directed graph (i,.e., parti.atty rather than [[nearly

ordered). Another [nteresti,ng extension would be to design algori,thms where the

www.manaraa.com

32. Ct4APTLR 11

execution of a task by a process may be interrupted by another process. We expec:t that

th_s approach would result in more efficient algorithms, si.nce processes which are not

doi.ni_ useful work can be interrupted. A careful performance analysis incl.udi.ng the

additi.onal overheads _ntroduc:ed by the interruption mechanism i.s needed here. Thi.s

• problem has been addressed in two recent papers by Barak and Downey [:3] and [zl].

Fi.nalty, we note that the results of this chapter are not restricted to multiprocessor

system._. The i.deas can be used to solve any problem i.n Operati.ons Research which

sati_sfi.es conditi.ons similar to C|, C2 and C3.

www.manaraa.com

Chapter Ill

Asynchronous Iterative Methods

for MultiprocessorsI

1 - Introduction

In this chapter we investigate tile fixed point problem for an operator F from IRn

i.nto' Etsetf: we want to find a vector z. in IRtz which satisfies the system of equati.ons

represented by

x -- F(_.). (1.1)

In []. 1], Chazan and Miranker introduced tile chaotic reL_ation scheme, a class of

iterative methods for solving equation (l.J) where F is a li.near operator gi.ven by'

F(_.) = A_ + b. They .,_howed that iterations defined by a chaoti.c retaxatEon scheme

converge to the solution of equation (l.l) if and only if e(IAI)< 1. (If M Es a real

n×n matri×, p(M) denotes its spectral radius and IMIdenotes the non-necati.ve" n×n matrtx

obtaEned by replacLnE the elements of M I)y their absolute values.)
• ,

In [41] and [43], Miellou t_eneralized the chaotic retaxati.on scheme to i.nctude

non-li.near operators and obtained converE,,ence results si.mitar to those of Ill] in the case

of contractinl_ operator.¢ (see, for example, [46, p. 433]).

In [1l], [4l] and [43], the motivation of defining chaotic retaxati.on i.s to account for

the parallel implementati.on of iterative methods on a multiprocessor system so as to

lCopyrit_ht |978, Association for Cornputin 8 Machineryj Inc._ reprinted by permissi.on.
This chapter appeared in Jo¢LrncLLof the ACM, Vet. 25, No. 2, April J978, pp. 226-244.

33

www.manaraa.com

34 CHAPTER 11|

reduce communication and synchronization between the cooperating processes. This

reduction is obtained by not forcing the processes to follow a predetermined ._equence of

computations, but simply by aliowi, nl] a process, when starting the evaluation of a new

'iterate, tochoose dynamically not only the components to be evaluated but also the values

of the previou._ iterates used in the evaluation.

The chaotic relaxation scheme does not, however, a[l,ow for a completely arbitrary

choi¢:e of the antecedent values used in [he eva|uat[on of an iterate. A restric:tion is that

there must exist a [ix.ed positive intei_er s such that, in carrying out the evaluation of the

i-th iterate, a process cannot make use of any value of the components of the j-th iterate

if j < i-s. We wi.l,l, show that this c:onditicm can be replaced by a more general, one, which

still, guarantees the converl]ence of the iteration.

In the next section we introduce the class of asynchronous i.ter_ti.t_e rttethods which

rel,axes the assumption mentioned above, and we show that existing iterative methods (and,

in particular, the chaotic rel,axat{on) can be represented as special cases of asynchronous

iterations. Section 3 _ives the definition and reviews some properties of contracting[

opet'_tors. Then the theorem of Section 4 I_eneralizes the sufficient condition on the

converl]ence of the chaotic relaxation obtained by Chazan and Miranker [Jl] and by

Miellou [41] and [43].]his result is further extended, Ln Section 5, to include iterative

methods with memory. In Section 6, we com.;icier the complexity of asynchronous iterative

methods, and we derive bound,.; on the efficiency, l'hese bounds are then compared with
J

actual measurements of asynchronous iterations, l'he experimental, results, presented in

Section 7, show a c:on._;[deral)le advantage for iterations making no use of synchronization.

Section 8 is devoted to the study of an asynchronous iteration showing super-linear

convergence and, through a .,;pecifLc analysis, we I_Lve lower bounds on the order of

convergence and on the efticiency..Possible extensions of the results are discussed in

Section 9, and concludinF, remarks are presented in the last section.

www.manaraa.com

ASYNCHRONOUS ITERA'I'IVE METHODS 35

2 - The class of asynchronousiterative methods

J

The fottowing notations witt be used throughout the chapter. If x is a vector of IRn,

its components wilt be denoted by x i, i.--I, ..., n. To avoid confusion, a sequence of

vectors of //i n witt be denoted t)y x.(j.), .i = O, 1, If F is an operator of _n into itsetf,

F(_.) witl also be represented in components by J'i(_) or by J'i(_l, ..., xn), _= 1,.... , n. We

denote by IN the ,.;et of air non-negative integers.

2.1 - Definition of a_ynchronous iterative methods

The defini.tion of chaotic iteration is orii_inatty due to Chazan and Mi.ranker [| |], and

the defi.nition we gi.ve betow for aS:yl=chrorzOILSiteration is si.mit.ar to their defi.ni.tion.

Definition 2.1 =

Let F be an operator from /Rn to /Rn. An cLs:ynchrono_Lsiterc_tion corresponding

to the operator F and ._;tarting w{th a given vector z.(0) is a sequence z.(j), j = 0, J, ...,

of vectors of/R n defined rocur,.;ivety by:

• { x._(.i--l) 'if i _,lj (2.1)" xi(J) = fi(xl(sj(j)), ..., _r_(srL(j))) if i C ,lj,

where J- = { Jj I J " 1,2,:.. } is a sequence of non-empty subsets of {1,..., n} and

,_. = { (Sl(J), ,.., sn(J)) I J "- l, 2, ... } is a sequence of elements in/N rL.

In addition, _/and /._ are subject to the fo|towing conditions:

for each i = 1, ..., n

(a) s_(j)< j..l, j = 1, 2,...,

(b) si(J) , (:on_;idered as a function of j, tends to [nfi.nity as j tends to infinity,

(c) i occur.,., inftnitety many often in the ,.;ets Jj, j =,1,2,

An asynchronou._; iteration corresponding to F, starting wi.th x(O) and defined by

J. and x_ w(tt be denoted by (F,x(O),#,._.>. i

www.manaraa.com

36 CItAPTER Ill

In the definition of chaotic i.tera.tions, Chazan and Miranker [11] use the following
p

conditi.on

(b') there, ext_,t.'__ a fixed inteEer ssuch that j-st:(j)_;s for j_- 1,2,... andi = 1,..., n,

in I.ieu of condition (b). Clearly, condition (b') i.mplies condition (b), and, i.n this sense,

asynchronous iterations provide a generalization of chaotic relaxations.

An asynchronou.,:; iteration (F,x.(O),'/,_.) may be thoul]ht of as corresponding to the

foltowi.ng sequence of computations on an asynchronous mul.tiprocessor.

Assume we have a pool of processors availºable. Let t j, j =, 1, 2, ..., be an increasin6

sequence of time instants. At time tj processor Pis idle and is assigned to the evaluatlon

of the iterate _.(j), x(j) differs from x(j-l) by the set of components { x i I i E Jj } and P

starts comput[n8 these components us[n8 values of components known from previous

iterates, namely the r--th component of the Sr(J).-th iterate, for r = 1, ..., n. The Choice of

the components may be 6uided by any criterion, and, [n particular, a natural, criterion is to

pi.¢:k up the most recently" available values of [he components. This scheme does not

require any synchronization between the processes. At some time tk, tater on (k'> j), P

will. fi.nlsh its computations and will, be a.,;slt]ned to a new evaluation: x(k).

The use of a.,.,ynchronous iterative methods is obviously not restricted to

mul,tiprocessor sy_4em_, and the scheme is also welt suited for execution on a network of

computers, in particular, when the commlmi.cation between elements of the network is not

too expensive as opposed to the computation itself.

We notice that, in the evaluation of an iterate, nothing is imposed on the use of the

values of the previous iterates. The only thing required, by condition (b) of the definition,

is that, eventually, the values of an early i.terate cannot be used any more in further

eva|uat[ons, and more and more recent values of the components have to be used instead.

On a mul,t[processor, this con(tit[on (:an be satisfied as l,on8 as no pro¢:essor crashes (and

eventual,ty completes its computation).

www.manaraa.com

ASYNCt4RONOU5 ITERATIVE METttODS 37

Condition (a) ot the definition states the fact that only components of previous

iterates can be used in the evaluation of a new iterate. Condition (c) guarantees that no

component be abandoned forever.

2.2 - Examples and particular cases of at_ynchronout=iterations

CI.a.,;_;ical iterative methods: point or block Jacobi, Gauss-Seidet, etc., as welt as

other,.; i.ntrocluced more recently: chaotic relaxation scheme[l|], periodi, e chaotic

scheme [].8], iteration chaotiqtte & retards [4J] and [43], it_.rcztion chaotiqtte

s_rie-paraLl$le [50], can all be seen as parlicular cases of asynchronous iterations.

For example, the point--Jacobi method defined on the operator F with the initial

approximation x(O) can be represented by the asynchronous iteration (F,x(O),;l,_) where _/

and ._ are defined by:

Jj={ l,...,n} for j,, 1,2,...,

sit j),= j--J for j,, 1,2,... and i= l,...,n.

The same point-Jacobi method can equivalently be represented by the asynchronous

iteration where J and _ are defined by:

Jj _ { I • (j-I rood n).} for j ,, l, 2, ...,

si(j),-, n l(J-l)/n J for j _- J, 2,... and i = J,..., n.

Atthough those two representatiol_s correspond to the same point-Jacobi method,

they differ by the implicit information they contain about the decomposition of the

computations. In the first ca_e, all components are evaluated at once and this, presumably,

wilt be done by one computational process. In the second case, however, each component

is evaluated _eparately, and up to n processes can be used to perform the evaluations.

Between the two extreme representations of the point-Jacobi method, in terms of

a.qynchronou'J iterations, several others can be proposed, each of whi.ch can be .interpreted

in terms of decomposHion into computationa[processes and in terms of implementation by

concurrent processes.

www.manaraa.com

38 CHAPTER Ill

The Lterat(ve method proposed by Robert, Charnay and Musy (it_rc=ti, on cheotiq_Le

s;rie-pc_raLLSLe [50]) can be obtained as a ._peci.al case of an asynchronous iteration Ln

whLch si(j) _ j-I (for all. _ =, 1, ..., n and j ,. 1, 2, ...). ThLs corresponds to a strict(y

sequential ¢:omputat[on of _,ets of components. The choice of the components w(th[n a set

i.s arbLtrary and the calcuLati.ons of thei.r values can be done si.mul.taneousLy but the

evaluat(on of a new .,Jet of components cannot be started before all. components of the

previ, ous set have been computed and thei.r new values relaxed. The goal of thei.r

research was to show that, for example, i.n the i.terati.ve sottuti.on of l,i.near systems

resultLn8 from the al)pticat_on of the method of fLni.te differences to part(a[differenti.aL

equations, i.t is possible to concentrate the computations more on those poLnts of the grid

'where the'conversence Ls slower than on other nodes. ThLs Ls not the case wLth ordLnary

i.terat_ve methods for which any component Ls i.terated as many ti.mes as any other

Component.

Chazan and M_ranker [ll] have proposed a the=eric rela_ati.on schem.e to sol,ve a
,

l,_near system. As we have already mentioned, our defi.ni.ti.on of an asynchronous iterati.ve

method (s s[mil.ar to the def{ni.ti.on they I_iVe for a chaoti.c Lterat_ve scheme. Our defLnLti.on,

however, does not requLre the (ondit[on that j-si(j) has to be uniformly bounded t)y some

fi.xed (nteser, say s, (for art i = 1, ..., n and j = 1, 2, ...). This assumpt(on, however, happens

to I)e satisfLed in mnst usual i.mplementations, w_th small, values for s. It w[l,I, be tlseftlt i.n

SectLons 6 and 7, and we w(It use th_s a.,_sumptLon expL_cLtLy i.n order to derive bounds on

the rate of convergence and on the effLciency of various methods (mpl,emented on an

asynchronou'.; mul,tLprocessor.

Atthoush all chaotic retaxatLon methods (as presented Ln [1 |], [4|] and [43]) can be

[dent[fled as asynchronou.,_ Lterat(ons, the converse is not true as [s Ll,l,ustrated by the

fol.l.owi, n8 example. Let F be an operator from /R2 Lnto Ltsel,f. Assume we have two

processes PI and t>2 attached to the evaluations of the fLrst and second components,

respecti.vel.y. To avoi.¢l synchroni.zat[on, the processes always use i.n an eval.uat[on the
/

www.manaraa.com

ASYNCI4RONOUS ITERATIVE ME'I-IK)DS 39

va|ues of the components currently available at the begining of the computation. If we

a._;sume that it atways takes I unit of tune for P! to perform the evaluation of _! and it

take:_ k units of time. for P2 to perform the k-th evaluation of x2, then the quantity

j- s2(j) grow.,., as _ which is unbounded. This iteration is a legitimate a.,;ynchronous

iteration, it is not, however, allowed in the settinB of [1l], [4]] and [43].

3 - Contracting operators

In the ne×t section we shaft give a sufficient condition on the operator F for the
e ,

convergence of any a.,;ynchronou.,_ iteration. _mdod definitions are given in this section.

3.1 - Lipschitzian and contracting operators

Contracting operator.,.,, to be defined botow, correspond to P-.contrczctions

in [46, p. /:133]. They _.;eem to have been first introduced by Kantorovitch, Vutich and

Ptn,.;ker in [3J], and they have been furtllor studied by Robert [49]. The notion was used

in particular to obtain the results of [10], [41], [43] and [50].

Definition 3.1,

An operator F from /Rn to /Rn is a Lipschi.tziatt opet'<ttor on a subset D of /Rn i.f

there exists a non--negative tz,,.n matrix A such that:

IF(x)-F(y)I .<AIx-yl, V _.,y CO, (3.1)

where, if z is a vector of //t n wi,th (:omponents zi, /, = !, ..., n, izl denotes the vector

with components Izil, i-- 1,...,,, and the inequality herds for every component.

The matrix A will I)e catted a Li.pschitzian nmtrix, for the operator F. I

From this definition we can see that any Lipschitzian operator is continuous and, in

fact, uniformty continuous on D. Howev('r, this definition is too broad and, in particu|arj

we are not guaranteed of the existence and of the uniqueness of a fixed point as is shown

by the following example. Take the operator F from /R to /R defined by F(x.) ---_/'-x.-_-*-_*a2,

this operator is Lipschitzian on IR because

www.manaraa.com

40 CHAPrERZll

IF(_,)-F(y)I,. I(x,--y)[(x.yV(J_.2_-_+.{-y2,_2)]1_ I_,--yl, V x, y (:/_.

However, the equation _ = _2_1 (correspond{ng to a - 1) has no so{uti,on. On the other
o

hand, the equation _. _. I .1,(correspond{n_, to a = O) has an infi,ni.ty of sotuti,ons, and, Ln

fact, a conti,nuum of sol.uti.ons.

We wi,{I,, therefore, restrict ourselves to the fo{I.owi,n8 cl.ass of operators.

Definition 3.2:

An operator F from IRn to /R" is a contr_ctirt E opercltor on a subset D of IRn i.f. [t

i,s a LLpschi,tzi,an operator on D w[th a l.ipschitzLan matrix A such that p(A) < I (where

p(A) [s the spectral, radius of A).

The matrix A w[I.[be catted a contract_n E nzafri_, for the operator F. II

The fact that, unli,ke LLpsch_tzLan operators, contracting operators are guaranteed to

have a unique fi,xed poi,nt i,n the subset D can be easily derived from the defimi.ti.on. In

addition, i.f we assume, for example, that D is dosed and that F(D) i,s a subset of D, we are

al__o guaranteed of the exi,stence of a fixed poi,nt i,n the subset D. A proof can be found

i.n[46, pp. 433-434].

3.2 - Examples of contracting operat0r_

Let f" be a ti,near operator 6i,ven by F(x.) = A:_ , b, where A i.s an n×n matT'ix and 6 i.s

a vector of /Rn. We observe that F i.s a c,ontrat:ti.n6 operator i,f and 0nty i,f ,o(IAI)< 1.

Therefore, in the case of tinear operator.,;, the notion of contracti.n 8 operators cai,nci.des

w_th the property stated by Chazan and Miranker for thei,r convergence resutt ill], and

thei.r resutt wi,tt appear as a parti.cular case of the theorem of the next secti,on.

We could have considered a more generat defi.niti.on for asynchronous i,terati,ve

methods by i,ntroduci,n6 a rel.axati,on factor ca> O. Thi,s woutd simpi,y consi,st of reptaci.ng,

Ln equati,ons (2.1), the operator F by the operator F_ ,, ¢_F . (I-&_)E, where E i,s the

i.dentLty operator of /RrL. It foitows that

www.manaraa.com

ASYNCHRONOUeoITERATIVE METHODS 41

IFcJx)-.Fca(y.)l ._ c._IF(_)-F(y)I * I/-callx.-yl,

an(l, if F is a contracting operator wilh a contracting matrix A, Fca is a Li.pschi,tzian

operator with the t.Lps(:hitzi,an matrix Ao - caA + ll-call. The matri,x A being non-negative

,we have f,(A_) _ cap(A) + IJ-cal,and, i,f we choose

0 < ca < 2/[l+p(A)], (3.2)

Fca is also a contracti,ng operator. In parti.cutar, as I.ong as condition (3.2) is satisfi.ed, the

results of the next section also apply to asynchronous it erative methods with relaxation.

Condition (3.2) is ctassi¢:al, and is mentioned, in parti.cular, i,n []], p. 221], [43, p. 62],

and [50, p. 3l].

If we con_._ider a linear sy.'_tem of equati.ons derived from a linear el.tiptic differential

equati,on by, the method of fi.ni,te differences, we note that the system is represented by

A_..--b, where 6 is a vector of If{ r= obtained from the boundary conditions and A is an

tz_rz M-matri,x (see, for example, [62, p. 85]). Therefore the system can be written into the

form of equation (1.1) in which F i,s the contracting operator given by
t

F(_.) --. (! - D-IA)_ . D-16, where D is the matri,x composed of the diagonal elements of A.

Thi.s example show.,.., in the case of linear operatorst the i,mportance of contracting

operators.

On the other hand, non-linear contracting operators, too, c:onsti,tute a very important

cla_;s. A first example is directl.y derived from the previous one. EU.iptic patti.at

differential equation.,_, obtained by the addition of a sma[t, non-linear perturbation to a

linear parti,'al differentia[equation, c:an also be shown to give rise to (non-linear)

contracti,ng operators.

More important, if G is a non-linear operator from IRn into itself with the simple

root _r, superli.near iterative methods have been devised to find the root .t" of C, provided

that an initial approximation _.(0) sufficiently cI.ose to _' is already known. For example,

Newton iterative method generates the sequence of iterates

.(i.*l) ,, F((i)) ,., _.(i) - [C'(z.(i))]-lC(z.(i)) , for i = O, l, ...,

www.manaraa.com

42 Ct4APTER Ill

which converges quadratically to the root .._"of G. In this particular example, we can easily

derive, under usual[assumptions (for example, G' satisfies some Lipschilz condition Ln a
I .

neighl)orhood of _), that the Nowlon operator. F corresponding to C is a contracting

operator. (This result w(Ll[I)e derived in a more general context in Section 8.)

In fact this result is very general. Let F be an operator from IRn into itseU with a

fi.xed point _'. If we assume that F is continuously differenti.abl.e in the set

Dr = { x. i IIx.--_il< r } and that the derivative F' vanishes at _" and satisfies a LLpschitz

¢:ondition

IIF"¢x.)--F'(x.)ll,: MIIx.-_li, Y=, _ CDr,

then it can be ea,._il.y _,hown that

IIF(_.)-F(_,)II_ 2Mrllx.-yll, ¥ =,y CDr .

"Therefore, by choosing the vector norm IIx.il,: Ix.ll * .., . Ix.hi (whi.ch only changes the

con,._tant M), the operator F is certainly a Lipschitzian operator with the Lipschitzian

matrix tq = [o._j] where c_ij - 2Mr, for i, j .-: 1, ..., n. In parti.cular, if we know a suffi.cientLy

close approximation to the fixed point _"(i. e., if r is small[enough), the operator F is also •

a contracting operator. l"his show.,_ that the class of contracting operators contains, under

weak conditions, all iterative functions, occurring in the ctassicaL superLi.near i.terative

methods.

4 - Convergence theorem

Before stating a sufficient condition ensuring the convergence of an asynchronous

iteration, we give a c:haracterization of a non-negative matrix with spectral radius tess

than unity. The result is cla.,_sic:aLand an algebraic: proof of this characterizati.on can be

found in [] l, p. 218]. A shorter proof, ba.,.,ed on the continuity of the spectral radius of a

matrix as a functi.on of its coefficients, is given below.

Lemma 4.1 ',

Let A be a non-negative square matrix. Then p(A)< 1 i.f and only if there exists

a positive scalar c_ and a positive vector u such that:

www.manaraa.com

ASYI_k'3t4RONOUSITERATIVE METHODS 43

A,, _;co_, and c_ < I . (4.1)

Proof:

We first assume thal (4.1) holds. In this case we note that llAllu_ _ < I, where the

matrix norm I1.11_is induced by the vector norm defined by:

IIx.llu_-re,x{ Ix._lh,il i = 1,...,,_}.

Therefore the matrix A is convergent which implies p(A) < ! (see, for exampl,e, [62, p.]3]).

Now assumP, that p(A)< J. Let t be a non-negative scalar and At be the matrix

obtained by adding t to all nuU. coefficients of A. Clearly, for any positive vector x., we

have At, .,; Ate. On the other hand, p('A t) iS a continuous function of t. In particular, since

A 0 = A and p(A) < 1, we can always choo._.e t > 0 small enough so that plat) < I (in fact, we

also have p(A)._ plat)). "[hen let c_ ,-plat). As At > 0, from Perron's theorem (see, for

example, [62, p. 30]), there exists a positive eigenvector t, correspondin8 to the

eigenvalue c,_. The positive scalar (,_ and the positive vector u verify ,4u s; Atu ,, cau with

ca < 1. And this completes the proof. II

This proof show_.;, in particular, that ca> p(A). But, we also see easily that the

positive scalar _,_can be chosen arbitrarily close to p(A).

We are now al)te to state a sufficient condition on the operator F for the

convergence of any asynchronous.; iteration correspondin 8 to F. Similar results were first

estal)l.ished for chaotic iterations, i.e., under condition (b'), by Chazan and Miranker [|i,]

in the case of linear operators, and by MieUou [4l] and [43] in the case of contracting

operators. The proof given hero follows the same idea as in [11, pp. 217-218].

Theorem 4.1 :

If F is a contractine, operator on a closed subset D of _n and if F(D) is a subset

of D, then any a_ynchronoLm iteration (F,x.(O),'/,._.) corresponding to F and starti.ng with

a vector z.(0) in D converges to the unique fixed point of F in D.

www.manaraa.com

44 Cl4APTER III

Proof:

Let j" be the unique fixed point of F. By considerinF, the operator F(_.,[)-(, we may

as_;umn, without toss of 8eneratity, that .[,, F(_)=, 0. By setting y =,_" in equation (3.1),

tile L[pschitz condition on the operator F 6ives:

IF<Z.)I_ alz,!, V z.CO.

Let A be a (:ontractin6 matrix for f and let c_ and u be as defined in Lemma 4.1.

Since v is a positive ve(:tor, for any s|arlinF, vector _(0) we can find a positive scal,ar

such that Ixf0)l-_ _v.

We wilt show that we can constru(t a sequence of indices jp, p ,_ O, l, ..., such that

the sequence of iterates of (F,z.(O),_'t,._.)satisfies:

Iz,U,)l_ _,c,Pv for j ;_,jp. (4.2)

As 0 < (,) < 1, this shows that z.(j) --, 0 as .j -+ oo and this wilt prove the theorem.

We first show that inequality (4.2) hol.ds for p = 0 if we choose .Jo = O. That is, for
,/

.j __0 we have:

Iz.U)l _ _,v. (4.3)

From the choi(e of _, inequality (4.3) is true for .j = 0. Assume, for indtJc:tion, that it

is true for 0 :_ j < k and consi¢lc:r _.(k). Let z denote the vector with components

zt _ z.i(si.(k)),...... for i. - 1, , n. From Definition 2.1, the components of _(k) are 8iven either

by _.i(k) .-. z.i.fk-J) if i ff Jk, in which case Iz.i(k)I ,. Iz.ifk-l) I ._on,u or by z.i(k) ,_ fi(z) if

i. C Jk" In this tatter case, we note that, as sg(k)< k (condition (a) of Definition 2.1), we

have:

and in particular:

As 0 < ca < I, in this case too we obtain Ixi(k)l .__vz and (4.3) is proved by induction, .

which shows that (4.2) is true for p _-0 if we choose .J0 = 0.

www.manaraa.com

ASYNCIIRONOU5 ITFRATIVE METHODS 45

Now aS,SLImP,that jp ha._ been found and that inequality (4.2) holds for 0 ._ p <q. We

want to fi,nd jq and show that (4.2) also holds for p = q.

First d_:fi.ne r by

r--- rain{ k I V j P. k sL(j) ;a Jq..l , for i = 1,..., r_ }.

We see, from condi.ti.on (b)of Defi.ni.ti,on 2.1, that thi.s number exi,sts, and we note that, from

condi.tion (a), we have r > Jq-I which show.'.,, i,n particular, that Ix.(r)l u,,,q-lv.

Then take .i _ r and consi,¢ler the components of x.(j). As above, let z be tile vector

wi,th components zi. _ _i(si(j)). From the choice of r, we have sit j) ;_ Jq-l' for i = 1, ..., r_,

and this shows that Izl .<_,.,qlv. In particular, using the contracti.ng property of the

'operator F we obtain:

IF(z)l ._Alzl _; wc_q-lAu < wc_qu.

This i.nequality .,;how.,_that, if i (,Ij, _i(j) sati,sfies,

Ix/J)l ,. If/z)l .<wc,)quz •

On the other hand, if i _ Jj the i-th (omponent i.s not modifi,ed. Therefore, as soon as the

[-th component is updated between the r.-th and the j-th iterati,on we have:

Ix.i(j)l ._ _(,',qu i . (4.4)

Now, define jq as:

Jq = rain{ j i jm- r and {J,..., n} ,--,I rU..,U,IJ }

(thi..,, number exi,sts by conditi,on (c) of Defi.ni.ti.on 2.|), then for any j m.jq every component

is updated at least once between the r-th and the j-th iterati,on and therefore i.nequal.i.ty

(4.4) hol.ds for i = 1, ..., n. [his shows that i.nequali.ty (4.2) holds for p ,, q and thi,s proves

the theorem, II

Cons[deri.ng only the cl.a,Js of I.i.near operators, F(z.> : A_, + 6, Chazan and

Miranker [|l] have established a stronger result, namely, thai the condi,ti.on p(IAI)< I _s

also a necessary conditi.on for the convergence of chaoti,c i.terati.ons.

www.manaraa.com

46 CttAPTER Ill

5 - The class of asynchronous iterative methods with memory

The idea behind the definition of asynchronous iterations, as presented [in Section 2,

is to allow, h_ the evaluation of F(x), different (and i.ndependent) processes to cornpute

different subsets of the components. This corresponds to a natural, decompos[it[ion for the

evaluat[ion of f'(_.) when the operator F [is known expti.ci.tty by the set of functi.ons

fl, "", J'n' This is not, however, always so. For example, if F l.s the Newton operator

corresponding to a non-I[near operator C, {. e.: F(_) = x. - [C'(_)]-lC(x), tlSUat[y only the

operator C is 6[iven and the operator F is not known expt((c[itty. In thi.s part[icular case,

when two processor,.; are avail.able, a more natural decomposit[ion, as proposed by Kung

tin [37], is to have one process comput[in6 tile value of C' whi.l,e the other process uses thi.s

value for the evaluation of F. More precisely, if x. and y are two global variables

containing the current values of the i.tera!e and of the rec[iprocat of the der[vati.ve of C,

respecti.ve[y, the two processes correspond to the two folt.ow((n 6 programs.

Process 1: white (termination criterion not sat[isfied)

do x. "= x- y×G(x.).

Process 2: white (termination criterion not satisfied)

do. y :_ [C'(x)] 'l

Starting w[ith the [initial values x(O) and [C'(z.(O))] -1 for _ and y respecti.vel.y, the

two processes execute their pro6rams asynchronousl.y and use for _. and y whatever

values are currently available when needed.]'hey implicitly define the sequence of

[iterates x.(j.), for j ---O, 1, ..,, through formulas of the form:

,(j,) .-, H[(j..l),x.(kj)], w_th kj _; j..l , (5.1)

where

H(z.,y) = .x.- [G'(y)]-IG(x.).

This iteration, however, is not all.owed in the setting of Defi.n[iti.on 2.1, because, Ln

equation (5.1), _(j) is defined in terms of two previous iterates. This moti.vates the need

for a 8eneral[ization of the el.ass of asynchronou.,_ i.teratLve methods.

www.manaraa.com

ASYI_]IIRONOU5 ITERATIVE METHODS 47

5.1 - Asynchronous ileration_ wilh memory

A generalization to Definition 2.1 (an be obtained by noting that, if, for j = 2, 3, ...,

it happens that kj = j--2 in equation (5.1), this equation defines a _equence of iterates

which corresponds exactly to the sequence generated by an iterative method with one

memory. This remark suggest._, the following generalization for the problem stated in

equation (l.]).

Given an operator F from [/RrL]m into /Rn, the problem is now to find a vector _" in

IRn such that:

_' ,= tim ! rn _ F(x'J'""_:m)' (5.2)• {_. "_.L...,_-_}
The vector _" wilt still be called a fix.ed poi,nt for tile operator F.

In very much the same way as we introduced the class of asynchronous i.terative

• method,.; to solve equation (1.1), we now introduce the class of asynchronol_s iteratiue

nt.ethods tuith ntentory to solve equation ([5.2).

Definition 5.1 :

Let F be an operator from [tRn] m into /fin. An asynchronolLs iter(ttion lui,th

nzenLory corresponding to the operator F and starting with a given set of vectors

x.(O), ..., _c(nz-l) is a sequence _.(j,), j=, O, 1,..., of vectors of /Rn defined for

j = m, re*l, ... by:

_(j--I) if iZJj=i'(J) = [z(zl; ..., zm') if _ C Jj ,
i .

where zr, I _ r .<.m., is the vector with components zi.r _ _,i.(tir(j)), I _; i _;n. As in

Definition 2.1, j = { J) I) = m, re*l, ... } is a sequence of non-empty subsets of

{1, ..., n} which correspond |o the subsets of components evaluated at each step of the

iteration. But the sequence _is now to be replaced by:

_. = { (sll(),), ..., snl(j), s12()), ..., shin(J)) I J -- m, re+J, ... } ,

a sequence of elements in [INn] m. In addition, white condition (c) of Definition 2.1

remains the same, (onditions (a) and (b) now become:

www.manaraa.com

48 CItAPTER llI

for _ach i = 1, ..., n

(a) max{ sir(j) I I .,; r _; m } _ j-l, for j ,, m, re*l, ..i,

(b) mini sir(j) I 1 a r _;m } lends to infinity as j tends to infinity.

An asynchronous iteration with memory corresponding to F, starting with a set X

of ,_ vectors and defined with ,_tand ._4wil,L be denoted by (E,X,2,_). []

For practit:al rt:asons (e. g., stability in the implementation on a computer), we might

want to have the additional condition thai the vectors z 1, ..., znt are all disti.nct. But this

restriction ts not es.',ential for our purpose here if we assume, for example, that the

operator F is defined I)y conti.nuity when two or more vectors are identical. This wttt be

the case w{th the class of operators we w{ll consider.

In order to obtain, for asynchronous iterations with memory, a convergence resul,t

sirnil.ar to the result staled in Theorem 4.1, we need to generalize the notion of

contracting operators to operators from [IHn] m into E¢n.

In the remainder of the (_ection, we w[lt use the following notation. If {x 1, ..., rm} is

a set of vectors in IRn, z =-.ma×[x. 1, ..., rm,] denotes the vector in R n wi.th components

z i --- max{ x,ir I I _ r ..; nt }, i = 1, ..., n. A natural, generalizati.on to the notion of

contracting operators is gi.ven i.n the foltowi, ng.

Definition 5.2:

An operator /- from [IHt_]m into //r_ni.s an m-contrnctin_ operntor on a subset D of

IHn if there exi_t_._ a non-negative n_.n matrix A wi.th spectral, radius l,ess than uni.ty

satisfying, for all _1, ..., r m, :),1-.., :ym. in D,

IF(_.I, ..., =,n) _ r(yl, ..., ym.)l _ A max[Ix.l-yll, ..., Ix.m-yrr'l].

The matrix A wilt be call.ed a contrc=ctinE matrix, for the operator F. I

When m = 1, the preceding definition corresponds exactly to Defini.tion 3.2, and

m-contracting operators have all. the properti.es we have already menti.oned for

www.manaraa.com

ASYNCHRONOUS ITERATIVE MI'THODeo 49

contracting operators. In parlicular, it is clear from the defi,nition that nz-contracti.ng

operators are continuous and, in fact, uniformly Conti,nuous on D nt. The uniqueness of a

fi,xe(I point in D is al_o easity derived, in addition, if we assume that D is a closed' subset

of !Rn such that f(D m) is a _;ubset of D, then we are guaranteed the exi,stence of a fi.xed

point in D: the f_xed point is, for exampte, obtained as the [t.mit of the sequence =(j),

j = 0, I, ..., defi.ned by:

x(j) .-. F(x(j-l), ..., _.(j-nt)) , j = nt, nt+J, ...,

whi.ch i.s i.ndependent of the set of starting vectors x(0), ..., x(m-l) i,n D.

We are now able to state the analogue of Theorem 4.! for m-contracting operators

i,n the fottowi,ng.

Theorem 5. I t

If F is an m-contracting operator on a closed subset D of /Rn such that F(D nz) is

a subset of D, then any a:;ynchronous iterati,on with memory corresponding to the

operator F and starting with an arhitrary set of m vectors in D ¢:onverges to the

unique fixed point of F i.n D.

Proof:

Wi.th s[i,ght modifi,cati,ons, the proof of thi,s theorem i,s identi,cal, to the proof of

Theorem 4.1. II

5.2 - Examples of asynchronous iterations with memory

In the begi.nning of this secti,on, we, considered the Asynchronolzs Neu;ton's method to

fi.nd the simple root _" of a non-Linear operator C. This method ted to the sequence of

i.terates generated by the asynchronous iteration w_th memory (H,{x.(O),x.(O)},_'J,,_.), where:

Jj = {l,..., n} for j- 2, 3,...,

sil()).--)-1 , si2(j),,, kj for j- 2, 3,... and i = 1,..., n.

In addition, as the operator H can easity be shown to be a 2--contracti.ng operator

(assuming, for exampte, some Lipschi,tz condition for the deri.vati.ve of C in a smatL

www.manaraa.com

50 CttAPTER]II

neighborhood of the root _r), we _.;eethat tile .,_equence defined by equation (5.1) converges

to _', provided that kj tends to infinity with j (which simpty states the fact that the

processes eventuatty (omptete each step of their computations).

Let F he an operator from [_rt]n= into /Rn, and let ca be a positive scalar. Consider

the operator Fc_ from [lt]n]m+l into /Rn obtained from the operator F by the introduction

of the relaxation factor a), and defined as

Fa)(x.O ' :,:1, ..., Cn.) = (l_a_)zO + a_F(_I, ..., _:tn) .

We first note that both /- and Eta have the same fixed points (if any). We also note that, if

F is an m.-contractin8 operator on some subset D of /Rn with the contracting matrix A,

, then, for all _0, ,.1, ..., _m, y0, :),1, ..., ym in D, the operator Fa_ satisfies:

IF_,(*°, ...,_"*)-[dy °, ...,¢*)1 _ II-_,,ll,.°-y°l+_,_IF(,,1,...,,m)-F(yl, ...,xm)l

II-ollx°.y°l + _._A,.a×[I.Iyll,..., Ix"-y"Zl]

-_ [IJ_-,l/* a¢O.,_x[l=°-'y°l,Ix_--yll,...,I*'_-¢=1],

and, provided that 0 < a_< 2/[l.p(A)], Fa_ is an (m+l)-contractin 8 operator on D with the

contractin_ matrix Aa_ .--II:a_ll + c.¢1. This reestablishes, in a more 8enerat settins, the
i ,

result mentioned in Section 3.2 for asynclwonous iterative methods with retaxation.

In [42], Miellou introduced a Eeneralization of the idea of it_rotions chaotiqtLes _.

retards for the problem of findin_ the fixed point of an operator F from [_n]2 into /Rn. His

t_eneraiization is a parlicutar case of an asynchronous iteration with memory

corr=_spondinl_ to the operator f (with m- 2). Mieltou, in addition, 8ives conversenc:e

resutt.,., under differen! assumptions on the operator F (monotony, continuity and existence

of a fixed point).

Many more examples of asyn(.hronou_ iterations with memory can be 8ivan and, in

parlicular, all ciassi(a| iterative method with memory can be expressed in this way. In

addition, air usual super-Linear iterative methods with m memories can be shown (under

weak conditions) to correspond to some (m.+l)-contracting operator, therefore ensuring the

conversence of any asynchronous iterations corresponding to this operator.

www.manaraa.com

ASYNCI4RONOUS ITERATIVE METHODS 5!

6 - On the complexityof asynchronousiterations

[_el F be an operator from /Rn to itself with a fixed--poi,nt]" and satisfyi.ng the

assumptions of Theorem 4.l. We now investil]ate some measures of complexity for the

converl_ence of the asynchronou.,; iteration (F,x(O),7,_) toward the fixed-point _"of F.

We will first deft.re, i.n Secti,on 6.1, results appti.cable to asynchronous i.terations in

F,enerat, then, in Section 6.2, using condition (b')in Definit¿on 2.1, we wilt derive more

specific results for the parti,cular case of chaotic i,terations.

The constructive proof of the theorem already prey{des us with bounds for the error

vector z.(j) - _. And, in fact, if F is a contracting operator width the contracti,ni_ matrix A,

we note that an estimate of the error committed with the asynchronous iteration

(F,x.(O),/,1,..5) is directly obtai,nable from the asynchronous iteration (A,I_.('o)-_I,,t,_). This

estimate is used in this section to derive bounds for the complexity of asynchronous

iterati,ons correspondin[,, to contractin8 operators. However, since (A,I:_(O)-._I,,'t,_)can

only rP.ftect'linear conw:rF, ence, this estimate is certainly not adequate to deal with all

asynchronou.,; iterations, and, in Section 8, u._;inl_an example, we present an analysis for an

asynchronous i,teration wi,th super--linear converl_ence.

For c:onvenience, we only consider the convergence in norm of the error vector

_.(j).-]'. By choosing, for example, the norm IIx.II,:-max{ Ix._ll i : 1...., n }, this

corresponds to the worst possible case for the conversence of the components.

To measure the it,near convergence of the sequence z.(j), j ,, 0, 1, ..., toward its limit

', we con.,;i,¢ler the foltowini complexity measures often referred to i,n the literature. The

rate of converl]ence of the sequence is deft,ned as:

;--lira infj.._o o [(-lo_ll_.(j._.._ll)/)].

In addition, if cj i.s the cost as_ociated with the evaluations of the first j iterates,

_.(1), ..., _,(j), we define the complexity of the sequence by"

E - timinfj._oo[(-=o_ll_.O)"_'ll)/cj]•

www.manaraa.com

52 CHAPTER Ill

If all I.ogaritl'_m.,., are taken to the base 10, 1/_ measures the asymptoti.c number of steps

requi.red to divide the error by a factor of 10, whereas 1/1: measures the corresponding

cost. We note that, if cj/j tends to some finLte t_mit _' (which corresponds to the average

cost per step), then the con',p[exity _._simply st.yen by E = _/_'.

lhe costs cj, j ,-- 1, 2, ..., (:an be chosen accordi.n 8 to any (onvenLent measure. In our

case, we consider the cost to correspond either to the number of evaluations of the

operator F, or to the t_me to perform the evaluations. In the former case, i.f each

component i.s equally as hard to compute, the cost can be directly eval.uated from the

sequence (_/by consL(lerLng

cj,-,('l,l_l' ...+ {,lyl)ln, (6.1)

where {J j{ is. the cardinatity of the set .Jj, i.. e., the number of components evaluated at the

j-th step of the iteration. In the tatter case, the costLs better suited todeat with paraLleL

algorithms, and Fan be evaluated through the ctassL(al toots of queueLng theory. When Lt

Ls necessary to i.ncli(:ate whk(h cost me.asure Ls used in the evaluati.on of the complexLty,

we u.,;e the notation.,_ Ee if the cost is measured in number of evaluations of F, and Et [f

the cost i.s measured by the ti.me needed to perform (sequenti.atly) one eva|uatLon of F.

6.1 - General bounds: asynchronous iterations

We return to the proof of lheorem ,q.l, and we use the same notati.ons. The proof

simply con_.;ist_ of con'.,tructini_ an increasing sequence of i.ndi(es jp, p ,, 0, l, ..., sati.sfytng

II_.q)- _'11.__-'P for y _.jp,

whore the positive constant _ can be taken to be _ =, From the construction of

this ._;equence we note that

jp+j = jp + rp + tp for p = 0, l, ...,

where rp and tp are integers chosen to sati.sfy: (1) starting wi.th the i.ndex jp*rp, art

evatuations of i_terates do not make any more use of values of components corresponding

to i.terates with i.rldi(.e_ smatter than jp{ and (2) art components are evatuated at teast once

between the" (jp+rp).-th and the (jp+rp+tp).-th i.terates.

www.manaraa.com

ASYNCHRONOUS ITERA'[IVE METtK)DS 53

Now let

pj: sup{p I r0 •to +...•rp..1• tp_l _ j] for j ,, O, l, (6.2)

Then, if we know rp and tp for p ,, O, 1, ..., we can deduce a bound on IIz.q)q'll since

Ilxq)-'_'ll__'_,PJfor j ,, O, 1, ...,

which shows that the seqlmnce _.(j.), j ,., O, 1, ..., converp_,es at l,east as fast as the sequence

c)pJ, j ,= O, 1, ..., with a rate of convergen(e Xt such that

_ - if,ira infj_oo (P j/J)] Iog_.

And, if cj is the cost a.,;sociated w_th tile evaluations of the first j iterates, we have the

fol,l.ow[ng bound for the complPxity:
J

E _. - [[im infj.,o,._ (pj/cj)] Logo) .

In addition, as was noticed earlier, Lf A is a contracting matrix for the operator F, ¢,_can be

chosen arbitrarit.y ('.lose to p(A). Thi.s shows that Ln the bounds we have just obtained we

(:an simp|y replace _ I)y p(/I), and this yi.elds the fot[owi, ng.

Theorem 6.1 :

I.et f" satisfy the condition of lheorem zI.l, and l,et A be a contractLnK matrix for
e

the operator F, Then the a._ynchronou.,; i.teratLon (F,x(O),_,xl.)converges to the fixed

poEnt of F w_th a rate of convergence

)_ z - [tim infj.._oo (Pj/J)] logp(A>,

and a compl,exity

E _. - [tim infj.,o._ (Pj/¢fl] Iogp(A),

wh(_re the ,.;equence p) is defined from J and ,d by equation (6.2).

An example

As an. illustrat(on, we con.,dder the parall.el, implementation of Jacobi's method with k

processes. For simpti(ity, we assume that r_ is a mul,tipl,e of k, and we set q = n/k.

To avoid an overhead (n the selection of the components to be updated at each step

of the i.teration, each process is assi.gned to the evaluation of a fi.xed subset of the

components. In particular, when all components are equalt.y as hard to compute, and when

www.manaraa.com

54 CItAPTER Ill

all processors are equatly as fast, it is natural to decompose the set of components into

subsets of equal _,tze.,,,('_- and, for example, to assign the flrst process to the evaluation of

the fi.rst q components, the ._;econd process to the eva|uation of the next q components, and

so forth. Corresponding to this decomposition, a parallet implementatlon of JacobL's

method with k processes can be represented by the asynchronous iteration (F,x.(O),_/,X_),

where _ and x_ are defined by:

Jj = { _ I I + (j.-! rood k)q _ i _ q + (j-I rood k)q }. for j ,, 1, 2, ...,

sic j) -[(j-l)/kJq for j ,, 1,2,... and i l,..., n.

' "[he two asynchronou._; iterations we introduced in Section 2.2 to represent Jacobi's

method correspond to the particu|ar ¢:ases k = ! and k = n.

It is easy to check that rp and tp are gi.ven by I and k, respecti.vety, for p ,= 0, 1, ...:

"[h[s shows that pj ,. Ll'/kJ and therefore

]_ (1¢)_. -([ogp(A))/k .

Now, if cj measures the number of evaluations of F required to compute the first j

iterates, usin8 equation (6.1), we have cj = ilk. This 8_ves for the comptexity:

Ee(k) _ - togp(A) , (6.3)

For all vatl.les of k, we obtain the same bound for ihe complexity. In parti.cular, when F is

the li.near operator defi.ned by F(x.) = A_: +/), where A i.s a non-negative n.×n. 'matrix wi.th

spectral radius I.ess than unity, then A can be chosen as a contracti.nl] matri.x for F and the
i .

bound (6.3) {s known to be .,.,harp.

Si.nce the asynchronous iterati.on we are con.,;i(:ler[ng corresponds to a parallel

implementation of Jacobi's mettled, instead of nleasur[ng the cost by the number of

evaluat{ons of F, i.t is more natllra[to use the average time to perform the eva|Llati.ons as a

rNP.a_ure of the cost. Let the time unit. be tile average ti.me to perform (sequenti.a|ly) one

eva[uat{on of F. Then, i.f pk _; j ._ (p+l)k, we have Cpk _;cj s_C(p.l)k and Cpk = p[),k/l¢].

The expression _k//¢ corresponds to the time for the k processes to execute in parallel

their c.omputat[ons and to syflchronize their executions. Tile factor Xk[s the pettclLt:y [_ctor

www.manaraa.com

ASYNCHRONOUS ITERATIVE METFIODS 55

introduced by Kung in [37]; it measures the overhead due to the fluctuations in the

'computing' times of the k processes, and can be evaluated if we know, for example, the

. distribution function for the time to evaluate F. In particular, we have Xj --- J and, for .

k _ 2, Xk _ J with the eqoality, only when it always take the same constant time to

evaluate F (i. e., there are no fluctuations in the computing time). This cost measure

• yields the following bound for the complexity:

Et(k) _. -[k/_, k]logp(A) .

Again, these bounds are sharp for the linear operator we .mentioned above, and the ratio

Et(k)/Et(1). k/X k meat;urea the speed-up achieved by usin8 a parallel implementation

with h proce._._es, We would expect the implementation with k processes to be k times as

effi.cient as the seqtJenti,al Lmplementation (with k = 1), but this is not so because of the

overhead introduced by synchronizing the k processes and measured by the penalty

factor _'h'

6.2 - Additional a_sumptions; chaotic iterations

In the preceding example, we have been able to carry out the analysis for .lacobi's

method (and even obtain sharp bounds on the complexity) because the representati,on in

terms of asynchronou.,; iteration._; is known explicitly and follows a very regular pattern'

Thi,s is not, jlowever, generally so. For example, in a parallel implementation with several

processes using no synchronization (as presented in SectiOn 2.J), the sequences _ and 07

(and, therefor'e, the sequences rp and tp, p ,. O, 1, ...) are not known directly but are only

, defined implicitly by the processes in the course of their executions.

[3etow, we present alternate bounds for /_ and E under conditions often satisfied in

usual implementations of asynchronous iterations. We assume that we know bounds on rp
.,

and tp, and we restrict the defi,nition of the (:lass of asynchronous iterative methods by

replacing conditions (b) and (c) of Definition 2.1 with the following:

. (b')]"here exists a positive integer r such that, for j ,. 1, 2, ... and i = 1, ..., n,

si(j) ;_ j-r,

www.manaraa.com

56 CHAPTER Ill

,

(c') there exists a non-nesative integer t such that, for j ,- 1, 2, ...,

Jj U ...U Jj+t = {1, ...,n}.

As was atready mentioned, (on(litton (b') was proposed by Chazan and Miranker in the

(h, flnition of tile chaotic relaxation scheme [11]. Aithoul]h the converBence result obtained

under condition (b) of Definition 2.1 is mathematicall.y more satisfactory, condition (b') is

very often satisfied in practical at)piication._, in particular, when the computations of all

components have the _;ame (omptexity (which is the case with a tinear operator).

Condition (c') is also satisfied for most of the usual implementations of asynchronous

iterations, since it is natural that (l) a process evaluates a component by us[n8 the most

re(entry updated values of air components; and (2) two processes never evaluate the same

component at the same time; in this case it foltows dire(try that, by taking r =--t+l,

conditions (b') and (c ') are equivalent.

Under the additional conditiOns (b') and (c'), we (/early have rp _; r and tp _; t, for

p---0, 1, ..., and, therefore, pj_; Ij/(r*t)J. From the bounds stated in Theorem 6.1, we

'immediately obtain the foltowin8.

Corollary:

t.et F satisfy the (end[tEen of l'heorem 4.1, and let A be a contractin_ matrix for

F. If the asynchronou.,; iteration (F,x(O),/t,,_)satisfies the additional conditions (b')

and (c'), then i.t convers, es to the fixed point of F with a rate of convergence

a - [l/(r.t)] toF,p(A),

and a comptexity

E P_- [[imj..,m j/(r,t)cj] togp(A>.

7 ,- Experimental results

The resutts of this section are reported in detait in Chapter V. A very brief

presentation is given betow as an immediate ittustration of asynchronou_ iterative

methods.

www.manaraa.com

, ASYNCHRONOUS ITERATIVE METtK)DS 57

Severa! asynchronous iterations have been experimented wi.th on C.mmp, the

Carnegie-Mellon multiprocessor [63], th_:y are described in Section 7.1, and the actual

measurements are prf:sented in Section 7.2. Although asynchronous iterative methods are

applicable to non-linear probtem.,.,, the experiments reported here deal only with ti.near

problems. More speci.fi.c treatments for non-[i.near problems wilt be reported elsewhere.

7.1 - Experiments with agynchronous iterations

AlL asynchronou.,_ iterations we have experimented with consist of the parattet

e.xecution of k processes. As we did wi,th the parallel implementation of Jacobi's method,

we a.,;sit_n to each of the processes the evaluation of a fixed subset of the components.

Each process computes cy(:ticaity new values for the components in its subs.et, and the

methods only (liffer by the choices of the values used in the evaluations.

Asynchron.otzs Jacobi's method CA.I): ["or the evaluations of all components, a process

uses onty values of the components known at the beginning of a czycLe, and the

process retea,.;es all new values at the end of each cycle.

As:ynchrotzo(Ls Gcu_ss.Seid(:l's method (AGS): Same as the A,I method except that the

process uses new values of the components i.n Its subset as soon as they are

known for further evaluations in the same cycle. ABain , i.t releases the new

va|ues (for the other processes) at the end of its cycle.

Pu.rel:y A._:ynchrono=Ls ntethod (PA): A process computes the new values of each

component by using the most recent values of all components and releases each

new value immediately after its evaluati_on.

The PA method is certainly the easiest method to imptement, and, as far as space is

concerned, isc:tearty the most efficient one, whereas the A,I method is the worst one, since

it requir6.s from each process not only a complete dupti.cat[on of all components (as of the

beF, i.nning of its cycle)I)ut stilt another copy of the components in its own subset. This

can hardly I)e justified but experimental results El.re useful comparisons between the AJ

www.manaraa.com

58 CttAPTER]II

method and the act_mat .lacobi's method (also between the AGS and Gauss-Sei.det's

methods).

In addition, both the A.I and AGS methods also require the need for a critical section

_n order to read all components at the begLnning of a cycle and to update the val.ues at the

end of a cycle, whereas no critical sec:ti.on is needed with the PA method. However, C.mmp

has the drawback that no indivisible instructions exist to read or write floating point

numl)ers (i.mptemented on two consecutive words of memory), therefore, if we are to

imptemnnt the PA method on C.mmp, only the f_rst 8 bits of the mantissa c:an be considered

•.;ignifi.cant, and the admissible error in the termination cri.terion has to be chosen

accordi_ngLy.

7.2 "Results

The three methods just described, as wel.I, as .Jacobi.'s method, have been

i.rnptemented on C.mmp to solve the Dirichlet problem for Laptace's equat!on on a

rectangular domain of IR2. Using the mettlod of finite differences, an approximate solution

to this problem can be found by solving a linear system of equati.ons. In the experiments

reported here, a regular grid has been chosen with 21x24 interior points, resulting in a

linear system of .,_ize tz = .504. This sy.'_tem can be represented in the form

= F(_.) -- A_. . 6, where the w;ctor 6 is obtained from the boundary conditions, and the

matrix A is a (very spar.,;e) non-negative matrix with spectral radius p(A)-- o.Pgl. Since

f,(IAl,) .--p(A)< 1, this show.,., that A i.s a contracting matrix for the operator F, and,

therefore, that ttle result of Theorem 4.| (:an be applied to F to ensure the convergence of

each i.terati.ve method.

At the time the measurements have been taken, the confi.gurati.on of C.mmp i.nctuded

si.x processors, and all. i.terati.ve methods have been run wi.th a numl)er of processes
a ,

k = 1, 2, 3, 4, and 6. Each of the results reported here is the average of three

measurements, but, since C.mmp was used in stand-alone mode during the experiments,

very tittle difference was noted from one run to the next.

www.manaraa.com

ASYNCIIRONOU5 ITERATIVE METHODS 59

In Table 7.1, we report for the four methods the average number of vector

evaluation_ r_;quLred to reduce (a_ymploLitally) the error vet:for by a factor of I0: this

corresponds to the cost measure lfl- e. And, Ln Tabl.e 7.2_, we report the average tLme

(expressed in seconds) required to achieve this reduction: this corresponds to the cost

mesure I/E t.

]he bounds obtained from the results of the previous sections are men.tioned in

parentheses along with the measurements. The parameters in these bounds have been

evaluated either directly (e.g., p(A).-. 0.991), or through measurements by tracing the

executions of the processes. In parlicular, for the A.I, AGS and PA methods, the bounds r

and t, defined in Section 6.2, have been determined by observing the Sequencing of the

ta._ks performed by the different processes. Similarly, the penalty factor in Jacobi's

method and the overhead cJue to the critical section in the A.I and AGS methods have been

obtained by direct m_asurements: they are presented in Tables 7.3 and 7.4.

.Jacob[A,I AGS PA

k = 1 254 (254) 254 (25,1.) 127 (25.I) 127 (254)
k = 2 254 (254) 266 (888) 142 (888) 127 (762)
k : 3 254 (254) 267 (846) 149 (846) 127 (762)
k _ 4 254 (25.1) 273 (825) 166 (825) 129 (762)
k = 6 254 (254) 285 (804) 196 (804) 128 (762)

Table. 7.1 - Number of evaluations required to divide the error by a factor of 10

Jacobi A.I AGS PA

k--1 337 (337) 337 (337) 168 (337) 168 (337)
k : 2 241 (2411 211 (705) 113 (705) 84 (506)
k.-.-3 178 (178) 149 (471) 83 (471) 56 (337)
k = 4 153 (153) 123 (372) 75 (372) 43 (253)
k :--6 131 (131) 102 (289) 70 (289) 28 (169)

Table 7.2 - Time required io divide the error by a factor of 10

a,

www.manaraa.com

60 CItAPTER II1

h-- I k=2 h=3 k=4 k=6

_k 1 1.43 1.59 1.82 2.34

0 29.9 37.1 45.1 57.3

Table 7.3 - Penalty factor with Jacobi's method

ancl percentage of ti.me wasted

k-- l k_2 k=3 k=4 k=6 ,

Xk 1 1.20 1,26 1.35 1.62

Z 0 16.6 20.8 26.0 38.2

Table 7.4 - Critical section overhead cost with the A.I and AGS methods

and percentage of time wasted

These results must only be considered to [I.lustrate lhe behavior of asynchronous

iterations, since, in particular, the two cost measures reported in Tables 7.1 and 7.2

strongly depend on both the problem (i. e., the matrix A) and the multiprocessor system.

Yet, they show a (:[ear advantage of asynchronous melhods over synchronized methods.

We note, for example, from Table 7.3 that, with Jacobi's method, when k- 6

processes are used, the penalty factor is a.,; big as _'6 _"2.34. This means that about 57
o

percent of the time is spent by a process waiting for the other processes to finish their

computation.,;. Tills limits the possible speed-up to 2.6 rather than 6.

We .also note that the use of critical sections, too, shoul.d be avoided, since, with the

A.I or AGS methods, when 5 processes are used, about 38 percent of the time is spent

waiting for entering the criti.cal section, again limiting the possible speed--up to 3.7 rather

than 6.

The measurements for the PA method, on the other hand, indicate that we achieve an

almost full. speed-up with this method (at least with a small number of processes). An

obvious reason for this speed-up is the total absence of any form of synchronizati.on;

www.manaraa.com

ASYNCHRONOUS ITERATIVE METIgOD5 61

another reason, specific to the problem we have experimented with and indicated by the

resul.t._ of Table 7.1, is due to the sparsi.ty of the matrix A.

The bounds derived in Section 6 have been obtained in a very general case. Yet

Tables 7.1 and 7.2 show that they are alway,._ within a latter between 3 and 6 of the actual

measurements (except for Jacobi's method where they are sharp).]n addition, we

certainly co_Jl¢l obtain much ._harp(,r bounds by carrying out the analysis for the specific

prob[em we have experimenled with (for example, by taking into account the sparsity of

the matrix), in particular, a specific analy,._is for the PA method can easily explain the fact

that J/E e is almost independent of the nuinl)er of processes (see Table 7.1).

8 _- Asynchronousiterations with super-linear converllence

As we already noticed, the bounds established in Section 6 are certainly not

adequate to measure the complexity of iterations with super-Linear converl_ence. In this

section, we u.';e as an example the iterative method we have mentioned at the beginni.n8 of

Section 5 to show how an analy.,;is of the complexity (an be done for this case.

To study the conver[;ence of a sequence _(j), j ,. O, I, ..., toward its limit st,. we now

u.,;e the following; usual measures of complexity. The order of convergence is defined as

p .-- tim inf./.+co [_.-[°_,llzO)_ll)//J],

and, as before, if c i i._, the cost associated with the evaluations of the first j iterates,

_.(!), ..., _(j.), we define the complexity of the sequence by:

E --- lira infj.._co [do_-togll_(j)--_ll)/_:)],

A_ain, we note that, if the averaF, e cost per step cj/j tends to some finite limit _" when j

tends to infinity, the complexity is simply given by E = Oogp)/t:.. In the remainder of the

section, we assume that the limit _"exists.

In order to find the simple root _' of an operator C from 11"4n into itself, we use the

Asyrzchrorzou.s Newtorz's n_thod, AN, as implemented by the two processes described at the

www.manaraa.com

62 Cl4APTER Ill

beginning of Section .5. Let ri, /. = 1, 2, ..., t)e the number of iterates evaluated by the first

.process, Pl, during the i-th evaluation of the derivative C' by the second process, P2" Let

JO = 0 and Ji- rl +''" , ri, for i. = 1,2,..., then z.(ji) , i = O, l,..., is the iterate used by P2

for the (i.+l)-st evaluation of the dc:rivati.ve. Starting with the two initial values x.(O) and

G'(_.(O)), the AN method generates with the two processes P! and P2 the sequence of

iterates x(j.), j ,, 1, 2, ..., defined by

_(j+l) = z.(i) - [C'(z.(ji_l))]"lO('_.(j)), for i = 1, 2, ... and Ji < J :_ Ji.+l • (8.1)

The following theorem gives the measures of complexity for this sequence if we

know some bounds on the sequence ri, i = 1, 2,

Theorem 8.1 :

Let the initial approximation x(O) be ctose enouEh to the root ._', that is

(o) (t - { _ I IIx_ll < • },

and let the derivative O' satisfy some l_ipschitz condition on Dr:

IIC'_)-c'<_,_ll_ t,fil_:--yll, v z,,y c ot .

If e satisfi.es the (ondition

MIIC;'(_')-111r< 2/5,

and if there exist some positive integers p and q such that

p ._ ri .< q , for i --- 1,2,...,

then the' order of convergence, p, and the complexity, E, of the sequence defined by

equati.on (8.1) satisfy:

P _- ;kp l/q , (8.2)

and

E _ (tog;kp)/fqr,), (8.3)

Whore),p is the tar[;est root of the equation z3 - z2 - (p-l)z - I = 0 (for which we can

check ea.,;ity that 0.4 • J'p < _,p < 0.5 . Jp. p =, 1, 2, ...).

Proof:

The proof is easy but technical, and below we onty Rive an outtine for this proof.

www.manaraa.com

ASYNCttRONOUS ITERATIVE METHODS 69

i .

[.el w ,, MIIC'qrlll, and let ¢ ,. 3_/[2('1--c='t)].From the choice of _, we first note that,

•.;tartin8 witt_ z(O)(at, the sequence Ilxq)-_'ll,Y-o, 1,..., is slrictl.y decreasi.n8 and

satisfies:

IIx(j_.l)--fll _ cll_(Ji_2)-_'llll_qi)-fll, for _: 2, 3, ...,

and

Ilxq+l)--fll:_cll._;q__ll..fllll._;q)..._li,for i = 2, 3, ... and Ji < J < Ji+! _' Ji + ri"

By _Jubstitution, it follow_ that, for i =.2, 3, ...,

r i) ri- lIlxtJi. l)._ll -_¢ ll_'(Ji-i --._11 IIx.(Ji_2)-_llll_:(Ji)-._ll,

and, if we set u.i..-- -Iogcllx.(A)-fll,we obtain:

Lti_ 1 _ tt i . (ri--l)ui_ j , tti_ 2 , for i. = 2, 3

Therefore, by u._;i.n[_the tower bound on r i, we deduce that

u.i.+l _ tJ.i + (p..l)ui_ 1 . ui_ 2 , for i = 2, 3,

"lhLs show.,., that tLi lends to infinity at least as fast as :kpt. Therefore, the order of

convergence, p', of the sub.,,equence x.(jt), i = O; /, ..., must verify p'>),p. The .bounds

(8.2) and (8:3) are derived directly from this last inequali.ty. []

In particular, if the cost cj mea._;ures the number of evaluations of the operator C,

we si.mply have cj _. j, and, therefore, Ee ;z (I.og),p)/q. On the other hand, i.f the cost

corresponds to the execution time, the complexity will depend on the imp(ementation

tsetf. For example, an implementation corre.;pondin8 strictly to the generati.on of the

.-;equence de.,...cribed by equation (8.1) requires the use of a critical section for reading and

writing, in a block, the values of the iterates and of the derivative. The use of a criti(al

.,;ection intror.ttJces an overhead, but, a._;i.'_ done with the PA method, the overhead can be

avoided if a process u.,;es whatever values are currently avail.able when needed. In thi.s

ca._;e the bounds of "lheorem 8.1 still, hold.,;, and t:. can be given the value c _ 1.

The parameter,.; p and q, too, depend on the particular implementation of the AN

method, and, especially, on the relative .,;peeds of the processors executing the processes

PI and P2' In practice, if the processors are equally a._; fast, we expect, with smart

www.manaraa.com

64 CttAPTER Ill
J

variations, r i to be close to tt, and the values p ,.-q .-- n can predict good estimates for the

complexity of the AN method implemented with two processes.

The AN method is easily generalizable to more than two processes. If k processes

are available, k I might be a_signed to the evaluation of the sequence of iterates, white

k 2 --- k -- k I are a._;signed to the evaluation of lhe derivative. The bounds of Theorem 8.1

s;titt hohl:; for this case as well, only with different values for the sequence r/, i =], 2, ...

(or for the bound.,; p and q), determined by the parallel implementations of the two

evaluations. Further results in this direction will be reportedel.sewhere.

9 - Extensions of the results

We mention below some direct exten._;ions of the results presented i.n t.his chapter

and some points subject to further development.

.

A straighforward _eneralization of the results can be obtained if, instead of IHn, we

consider the product P of n. Banach spaces Bi with norms I.lu i =,1, ..., n. tn this case, if x.

is;an element of P, x. is determined by its components x.i (7 Bi, /. =], ..., n. And

represents the non-negativ(: vector of IRn with components i = 1,..., ,,.

Con.';iderin8 only the cla.ns of linear operators, F(_), A_ + b, we have noted that the

notion of contracting operator.,; coincides with the condition that r(IAI)< 1. In [11],

Chazan and Miranker have shown that thi.s condition is not only sufficient but also

neces._;ary for the ¢onvt:r8ence of all chaoti(iterations. This implies, in particular, that all

asynchronou;; iterations ¢orrespondinE to a linear operator F are convergent if and only if

F is a contracting operator. The necessity of this condition, however, seems to be

inherent to the linear nalure of the problem, and when we also consider non-linear

operators the proof given by Chazan and Miranker does not apply any more. It would be

of interest to obtain condition.,; on the cla,.;s of operators for which air a.,.,ynchronous

iterations are Buaranteed to converl]e. Similar conditions for the convergence of a more

www.manaraa.com

ASYNCttRONOUS IFERATIVE METHODS 65

restric:ted cLa.,_'_,,of iteration.,{ would also be of interest, Ln parti.cutar, for the subc:tass of

asynchronous [terative methods corresponding to the additional assumptions introduced i.n

Section 6.2.

The bounds we have obtained to estimate tile rate of convergence of asynchronous

i.teration_.; have been derLvb.d by con.,_ich:rin6 the worst possible case, and, compared to

actual measurements, these bounds are very conservati.ve. It would certainty be very

useful to obtain t)otmds (or estimates)corresponding to the average behavi.or of

asynchronoui_ i.teratLon.,_, for example, gi.ven the probabi.l.[ty distributi.ons of the two

sequences _ and x_, or, more generally, given the distributi.on functi.ons for the time i.t

takes the different processes to evaluate the components.

We have already mentioned the possibiLi.ty of introducing a relaxation factor i.n

async:hronout; iterati.on.,_, and, for contracting operators, we have derived a possible range
/

that guarantees the convergence of att asynchronous Lterati.ons. Nothing is known,

however, ab(_ut the optm_al (:hoice of the relaxation factor, for example, gi.ven direct'Ly the

asynchronous [teration through J and ,4_,or, again, given the distri.buti.on functi.ons for the

evaluation times.

10 - Concluding remarks

In the _mptementation of most parallel atgorithm_, synchronization seems to be

required to assure the (ommunicati.on I)etween the processes, and to guarantee their

correct executions. However, the main drawback wi.th synchronization is that i.t degrades

c:onsi¢lerabLy the performance of the all_orithms because it is very time con.,_uming. The

class of asyl_chronou.._ iterntit/e nlethods avoids this drawback. It includes iterations

corresponcling to a parallel imp[ementalion in which the cooperating proces.ses have a

minimum of [ntercommuni<at[on and do not make any use of synchronizalEion. The PeLreL:y

As:ytzchrm_otLs method described i.n Section 7.1 is a typi.cal, example of an asynchronous

LteratLve method. Asynchronous iterations follow the same goat as chaoti.c

relaxations [11]: to eti.minate the need for synchronization i.n a para|l.et computati.on.

www.manaraa.com

66 CHAPTER Ill

• A.,.,ynchronou._ iterations generalize to asynchrono_s iterntions w_th m.em.ory which

allow different values of the same variai)te lobe used within the same computation. Using

the notion.c.; of; contr_cti.n E operntor.¢ and of nt-corttr_ctin E operatorsp Theorems 4.1 and 5.1

state sufficient conditi.ons to guarantee the converg, ence of any asynchronous iterations

and asynchronous iterations with memory, lhese conditions are satisfied for a tarlse class

•of oper'ators.

In the second part of the chapter, asynctironous iterations are evaluated from a

computational point of view, then the resul.ts of a series of actual measurements (obtained

by runnin_ asynchronou,,; iterati.ons on a muttiprocessor) are presented. These results

fully justify the use of asynchronous i.teratEve methods.

Genera| bound,,; on the complexity of asynchronous iterati.ons are first derived

directly from the proof of the convergence theorem. Although these bounds are sllarp for

a paralLeL implementation of ,lacobi's mr.thod, they are of tittte applicability since they

require to know c_ priori the exact .,;pecifi.calion of each step of the iteration. Alternate

bounds are then derived under additional conditions which are usually satisfied in

practical apptication_.;, l hese I)ound,.; are consistent with actual measurementsl for the

experiments we have rtln, they are always withi.n a factor of 6 of time measurements. In

addition, |it is our feelinB that these bounds can be tarl]ety improved if we take into

account specific characteri_;tic.,_ of the problem t)eiinl_ solved, therefore leadin B to a better

und,:rstandin[,, of asynchronou,.; iterations. In Section 8, for example, we have made a first

step in thiis direction, and we have presented an analysis for. the As:ynchronol_s Netuton's

m.ethod.

A seri.es of experiments has been conducted on C.mmp, a mul.ti.processor system

(with 6 proce_-_or_,_-at the time the experiments have been run), and several a.,.,ynct]ronous

{teratiive methods have been implemented to solve a tari_e ti.near system of equations.
/

They range from ./acohi.'s method, requi.rini] a full synchronization of all the processes at

each step of .the iterati,on, to th_ PA method, which requi.res no synchronization at all. In.

www.manaraa.com

ASYNCHRONOUS ITERAIIVE METHODS 67

between, the A,I ancl AGS method_ are cierived from the usual Jacobi's and GatJss-Seidel's

methods, and they require, the use of a critical section.

The experimental results show a consideral)le advantage for the iterative method

with no synchronizalion at all.. For a number of processes up to the number of processors

avaital)te on C.mmp, the PA method exhil)[ts full. parallelism and has an optimal speed-up

compared to Gauss-Seidei'_ method, the best sequential method experimented with. The

A,I and AGS methods have a very similar behavior, and when 6 processes are Llsed the

overt!ead catm.,_edby the critical section implies that 38 percent of the time a process is

waitinl] for enterinF, the criti¢:al section. As is intuitivel.y expected, Jacobi's method has

the worst t)ehav[or of all the method,.; considered, and, with 6 processes, the overhead, due

to the synchronization of all the processe._; at each step of the iteration, i.s about 57

percent (i. e., more than half the time a process is waiting for the other proces.,c;es to

f_ni.sh their computations).

On the l)a._;is of these experimental results, and for the problem we have considered,

there does not .*_eemto I)e any alternatiw_s: the PA method is obviously the most eff(ci.ent

one. In addition, another advantaE,,e of the PA method is that it is the easiest one to

implement, and, spacewise, it is also the most efficient one.

tSi.nally, another possibility, which has only been outlined in this chapter, is the

introducti.on of a relaxation factor. Ba_ed only on a few experimental results (not

reporled here), it is our I)el.ief that we can expect an improvement of the F'tLrel:y

.A._ynchroizou.s Over..R_.l_.c_tion method over the PA method similar to the i.mprovement of

the $OR method over the (?,auss-Seidel.'s method, if we choose the relaxation factor in an

opti.mal, way. The opli.mat choice of the rel.axation factor depends not only on the system

heinE,, solved, but also on the probability distributions of the various executi.on times by

the difterent processes.

www.manaraa.com

68

www.manaraa.com

Chapter IV

On the Alpha-Beta Pruning Algorithm

Part 1: The sequential algorithm

I - Introduction

Most so-catted intetligent program_ u.,;e some form of tree searching; among them,

most game playing program_ are built around an efficient tree searching algorithm known

as the alph_z-bet_z pruning _zlRorithm. In the first part of this chapter, we investigate the

efficiency of this atgorithm with respect to a cost measure fi.rst introduced I)y Knuth and

Moore in [35] and given in Definition 1.] below. The second part of the chapter is

devoted to the study of a parattel, implementation of the algorithm on an asynchronous

n_ultiprocessor.

Definition 1.1

Let Nn, d be the number of terminal positions examined by some algorithm A in

searching a uniform tree of degree n and depth d. The quantity

is calted the brnnchi.nE [actor corresponding to the search algorithm A. III

Anatyses of the w.-/t pruni.n_ algorithm have been attempted in two recent papers by

Fulter, Gaschnig and Gi.ttogl.y [23] an(i by Knuth and Moore [35]. Both paper,; address the

prol)lem of searching a uniform game tree of degree n and depth d with the _--_ pruning

algorithm under the as;sumptions tllat the nd static values assigned to the terminal nodes

are independent identi.calty distributed random variabtes and that they are all distittct. We

69

www.manaraa.com

70 CHAPTER IV

i.rnrnediatety ob,.;erve that, in order to evaluate tile branching factor, time Last assurnpti.on

reqI.Ji.res that the nd distinct values assigned to tile terminal posi.tions be taken from an

i.nfi.ni.te range. For most practical appli.cati.ons thi.s i.s, however, unreal.i.st[c.

Futl.er, Ga.,.,chn{8 and. G[ItoF, ty developed in [23] a general, formula for the average

number of terminal pos,i,ti.ons examined by the _.-/3 procedure. Thei.r formul.a, howe.vet, is

c:ornputationall.y intractable and leads to undesirable rounding errors for Large trees ([. e._ "

for tattle n and d) si.nce i.t [nvol.ves, i.n particular, a 2d-2 nested summati.on of terms wi.th

alternati.ng signs and requires on the order of ndsteps for its evaluation. Then they gave

some ernp[ric:al result.,., ba.,_ed on a serie;._ of simul.ati.ons, and compared the results wi.th

actual measurements obtained by runni.n8 a modi,fi.ed versi.on of the Technology Chess

Program [24], [25]•

In [35], Knuth and Moore have analyzed, under the same condi,t[ons, a sIrnpt.er

versi,on of the full cv--_ pruning algorithm by not considerin 8 [tie possibi,lity of deep

cut-offs; they have .,..hewn, i,n parti.cutar, that the branchin 8 factor of the resu|l.ti,nB

alBori,thrn i,s O(rL,/In t_.). Knuth and Moore also considered other assumptions to account for

dependencies among the ,._tati.c values a._._._i,Bnedto the fermi,ha| positi.ons and developed

analytic results under those assumption.,,. Their paper gi.ves, in addition, an excel.l.ent

presentati.on and historical, account of the w.-/S pruni,n 8 algorithm.

Dep'art(ng from the as._umpti.ons Of the two papers we just menti.oned, we fi.rst

• consi.der the effect of possi.b[e eqliaIi.ti.es between the val.ues assiF,ned to the terminal

nodes ofa uni.form try:e, assurnin B that these values are iindependent i.denti.calty distri,buted

random variabl.es drawn from any di.sct'ete probabi,li.ty di.stribut[on. In Sect{on 2, we

establi._h some nol.ation._ and pr_._l.iminary results[an¢l in Section 3, we derive a general

formula for the number of termi,naL nodes examined by the w--ISpruninl_ alBori,thrn when we

take i,nto account both .,.,hallow and deep cut--offs. The evaluation of thi,s formula requires

only a finite summation over the ranl_e of possi,bl.e values assi,Bned to the terminal, nodes

and is retati.veLy easy• We _._how,i.n parti.cuLar, that, when the terminal, nodes (:an only take

www.manaraa.com

PART 1: SEQUENTIAl. AI.PttA-BETA PRUNING ALGORITttM 71

on two di,stEnct values, the I)ranchi.ng factor of the t_.-/fl pruni,ng algorithm can grow wi,th r_

as O(tz/qn t_) for some choi,ce of the probability distribution. In $ecti,on 4, we show that,

when the discrete probabili,ty distribution tends to a conti.nuous probabil,ity dJstributi.on,

the summati,on derived in Section 3 can be replaced by an i,ntegrat, which constitutes the
p

worst case over at[discrete probal)i,lity distributi,ons. In Section 5, an anal,ysis of this

i,ntep_=,ra[show_._ that the t)ranc:hing factor of the (Y../_ pruning algorithm for a uni.form tree of

(Ie.E_ree n. grow_ with rl as -E)(n/ln n.), there,.fore confirming a (taim by Knuth and Moore [35]

that deep cut--offs have only a second order effect on the average behavi.or of [he

ez.-/3 pruni,ng a|t:,,orithm. In Secti,on 6, we propose a paral,l.elº i,mptementati.on of the

w--/_ pruni,ng algorithm in which several processes search for the sol,uti,on (i,. e., the val,ue

associated with the game tree) withi,n different subi,ntervats. Thi,s parallel, i.mpl.ementati,on

is analyzed in Section 7_ the parallel. [mptementati,on with 2 processes, (n part[cul,ar, turns

out to be more than tw(ce as effi,cient as the original, w--/fl pruni.ng algori,thm, whi,ch is

consequentl,y shown not to be opti.mat. Some concludi.ng remarks and open probl.ems are

El.yen [n the last secti,on.

2 - Presentation and initial properties of the o_-_ pruningalgorithm

There are two usual approaches for deali,ng w(th search[ng a game tree. _[n [23],

Futl,er, Gaschnig and Gill.o[,,l,y adopted the Min:-Mt_: approach, whi,l,e, i,n [35], Knuth and

Moore chose the Nr_'LRa-Mn'_approach. We w(l,t briefl,y present, i,n Section 2.1, the two

approaches and introduce the w--/9 procedure in terms of the Nega-Ma) model.. Then, i.n

Secti,on 2.2, we wi,ll, reestablish an ini,tEal result of [23] whi,ch was stated in terms of the

Ivtin .-Ivtax approach.

2.1 - The o_-/_ procedure

Let us consider a game (l,ike chess, checkers, ti,c-tac-toe or kalah) played by two

pl,ayers who take turns. It i,s common to represent the evolution of the game by means of

www.manaraa.com

72 CHAPTER IV

a i_m.e tree, Where each po.,.,itLon of the [_ame i.s represented by a node. If the posLti.on i.s

a dead-end, the node [s iermina(, otherwise all. possibl.e reeves from that posi.ti.on are

represented as the successors of the node. The structure of the tree {s preserved by not

8eneratinp, moves leading to some positions already generated (thus, avoi¢lin_ cyctes); thLs

L._ the functLon of the mo_e F[etzerator. The eucdu(_tioa J't_nctiotz i.s another i.mportant

functLon in I_ame pl.ayinl_ programn; [t ,._;' _-a.,.18n:, to each terminal posi.ti.on a st(ztic v(zltLe by

estimatinl] various parameters su(;h as piece counts, occupati.on of the board, etc. The

eva|uation functi.on evaluates the terminal nodes from one ptayer's v_ewpo_nt, 8Lvi.ng

hi.t_her va|ues to positLons more favorabte to thLs p(ayer. It i.s convenLent at thi.s point to

name the two pl.ayer.,; Max and Min. t-k:n¢e, Max's strategy i.s to l.ead the game towards

posi.ti.ons wLth hit]her values, whi(e Min'_ strategy i.s to I,ead the game towards posLtLons

wLth tower values.

The m_tzinzc=_, pt'eced_Lre i.s direct[y based on thi.s formu|atLon and can be used by

ei.ther Max or Min to (le¢i.¢le on his next move from a gi.ven position, a.,;suminl_ that hi.s

opponent wi.ll, re.,spon(t wLth hi.'-; best move. U,.;in[,, a rather brute force approach, the

minimax procedure ,'_"a.....tgn. values to all. nodes of a game tree. It fLrst assLt:,,ns to termina(

nodes the re:sul.ts of the eva|uation functLon, then i.t backs-up to Lnternat nodes
l

corr(:spondin_ to a posLti.on from whic.h i.t is Max's (M_n's) turn to pray the maxLmum

(mini.mum) of the values assi.gned to i.ts successors.

Suppose i.t Ls Ma)4's turn to play from an Lni.tia| posi.ti.on (correspondin 8 to the root

of the I_ame tree), then it is his turn to play from any posi.ti.ons at even depth and Mi.n's

turn to play from any posLtions at odd depth. Therefore, the minimax procedure wi.tl.

back -up values to the nodes of the [,,amP. tree throuBh a succession of

Mi.nLmazLnl_/MaxLmazLng operations. ThLs (orresponds to the Mi.n-Ma_ approach.

By observi.n8 that:

max{ mini z.l, =2, "'"}, mini :)'1, :72, "'" }, "" } =

max{ -max{-_1, "_'2, "'" },-max{-:)'1,-:)'2, "" }, "'" }'

www.manaraa.com

PART 1: SEQUENTIAL AI.PHA-BETA PRUNING AI.GORITt4M 73

ttle Min--Max approach (:an be directly reformulated into the Nega-Mn._: approach. In the

Nega.-Max formulation, a terminal node of a game tree should be assigned the result of the

evaluation function only if it is at an even depth (assuminl_ it is initially Max's turn to

play) and it should be as._igned the oppo.,_ite of the result of the evaluation function if it is

at an odd depth. Tt_e Ne[_,a--Max approach requires the same operator at all. levels of a

game tree, and' the uniformity of the nota|ion wi|l make it easier to carry out an analysis.

This approach wilt be used throughout.

Figure 2.1 shows the effect of the minimax procedure in a uniform tree of degree 2

and depth 4. The values assig, ned to the terminal nodes have been chosen arbitraril.y. The

path indicated by a darker line .¢_how.,.,the sequence of moves selected by the procedure.

• "_...i_m._l

Fil_ure 2.1 - Searching a game tree with the minimax procedure

The minimax procedure i.,'_clearly a brute force search and, when exploring a node,

Lt uses none of the information already available from the nodes previously explored.

Obviously, by taking, advantage of the information previously acquired we can easil.y

improve on the brute force .'_earrh. Figure 2.2 presents some simple patterns in which the

distribution of the information could lead to such improvements. In the fw, ure, the circled

nodes have already been explored, and they are labeled with their backed-up values; the

values of the other nodes arc: yet to be determined. We are interested in the value v of

the top level, node in both patterns Ca) and (b).

www.manaraa.com

74 . CHAPTER]V

(a) shaltow cut--off 2_ ""

(b) deep cut-.off

Fii,.ure 2.2 - Examples of possible cut-offs

Let us consider the pattern of Fil]ure 2.2 (a) fi.rst. From the defi.ni.tLon of the
i ,

mini.max procedure, the values u and = satisfy:

v -- , • = mnx{-2,...},

which show.'.,that _._-2 or 2 _-z.. S[nce 3 _ 2 ;_-_.,it follow.,.,that in,,4ependeI_tof the

ex.actrattleof _, we wilt have v _-3. "Thisshow_ that we need not explore further the

._;u¢:ces,.;orsof the node labeled _ ifwe are only _nterestedin the value of _. Th_s leads to

a fi.r.,.,t type of etLt-o.f[._ known as slmlloux ctLt--o[[._.

The pattern of Fi.i]ure 2.2 (b) itlustrates a deeper ctLt-of[. As with the previ.ous

example, there are immediate retati.ons between the values of the nodes. In particular, we

have :), ;z_-z, which leads us to consider two cases. Ei.ther :), > --z, and this means that the

value y _.,.,determined by its ri_,ht son(s) and certainly does not depend on the ril_ht son(s)

of z. Or 2'-" --z, in which case, since x. _. -:y and z;e -2, we deduce z. _. -2 or -z.._ 2; but

s_ince _ ,--max{3,--z] it follows that u, 3, independent of the exact value of _ and, a

fortEori, Endependent of the exact value of z. This shows that in either case the successors

of the node labe|ed z need not be further explored since the final value of v would in no

way be affected.

' The two examples presented in FiElure 2.2 indicate that a reduction of the search

www.manaraa.com

PART]: SEQUINTIAI. AI.PHA-.BETA PRUNING ALGORITt4M 75

can be achieved if a node passes down to its sons tile current value backed-up so far (3 in

the case of the two above examples} a._,a bound for pruni.ngbranches 2, 4, 6,...level.s

below; the I)ound can, of course, t)e improved as tile search progresses down the tree

(leading to more and more poss[bl.e cut-off s).

Using two bound,.; for even and odd ievel.s of a tree, these improvements are

implemented in the following procedure adapl,ed from [35].

in__tege=_rp.roced!Jrg_ AI.PHABETAIposition P, int_e_ alpha, _ beta):
h_eg!n !nte_eP, j, t, ,z;

determine the succes.,.,or positions: PI Pn I
if n = 0 then

AI_PIIAI]ETA :,- [(P)

" !93_ j": ! F.tep_ I until rL d.o

t :--- --Al.PlIAl]ElA(Pi,.-beta,-alpha);
• !f t > alpha then "atpha ::.- t;

i_f alpha :_bel,a then 8ot._.o_done (2.1)
.end;

done: AI.PHAE]ETA :.-. alpha
end

end

lhe Alpha-Beta procedure (from [35])

The function denoted by jr is the eval,uation function which assiBns stcLtic uczltLes to terminal

posLtions.

Knuth and Moore [35] have shown this procedure to be correct i,n the sense that the

cal,t AI.PHABEIA(P,--_,+_) a.qsigns to po.,fition P the value MINIMAX(P), assigned by the

mini.max proced,Jre. More generalLy, they showed [35, p. 297] that, if al,pha < beta:

AI,.PHAE3ETA(P,alpha,beta) ._;alpha, if MINIMAX(P) _; alpha, (2.2)

ALPHABETA(P,a[pha,I)eta) = MINIMAX(P), if alpha < MINIMAX(P) < beta, (2.3)
J

AI.PHABETA(P,alpha,beLa) > beta, Lf MINIMAX(P) ;_ beta. (2.4)

The same tree u.,;ed in Figure 2.1 to i/Uu.,;trate the minimax procedure is shown i.n

•

Fi.gure 2.3 to illustrate the effects of the _v-/3 procedure. The branches pruned by the

www.manaraa.com

76 CHAPTER IV

procedure, at(:Enclic,ated wEth dashed l.i.nes,and the nodes marked wtth a ci.rctehave not

been compLetety explored.

i

:22
Fi.gure 2.3 - Search{ng a game tree with the (Y--fl procedure

We observe that onty 8 out of the 16 terminal, posi.ti.ons and /9 out of aU. the 3/ nodes are

examined I)y the w.-_ pruni.np_, argot{thin in this example, re(hJci,ng greatty the cost of

searchi.ng the. tree. As is .,_een by (omparinp, Figures 2.1 and 2.3, the values backed-up by

the w--/r3procedure to some internal nodes are not necessarity the same as the vatues

backed-up by the minimax procedure, as reftected by the indetermEnati.on i.n

equations (2.2.) and (2./:1). l he top value, however, is not affected by thi,s i.ndeterminati.on.

2.2 - Some properties of the o_-/3 pruning algorithm

In thi,s ._;ection, we wilt introduce some notations whi.ch wi,tt be used throughout, and

we witt reestabtish, in terms of the Nt:ga-Max approach, an i.ni,tia| resutt of [23] gi.vi,ng a

necessary and suffi.¢.ient (onditi,on for any node of a game tree to be examined by the

w..-/3 pruning" algorithm.

2.2.1 - Notations

As i.n [35], we wEtt use the Dewey deci,mat notati.on to represent a node in a tree.

www.manaraa.com

PART l: SFQUFNTIAI.AI.PHA--BETAPRUNINGAI.GORI]t4M 77

Ivlore preciseLy, let _, the empty sequence, denote tile root of the game tree. Then, if J.

denotes some internal node of the tree w(th n sonsj J.j wLU denote Ihe j-th son of node _/(P

for j ,: 1, ..., tz. In Figure 2.4, node 4.1.3.4.3 is the node at depth ,5 whose path from the

root Ls i.ndi¢:ated with a darker Line.

t

c(4.1.3) ,, 3

_ "............ "1_ C(4.1.3.4) '_ -5

......../

ce(4.1.3.4.3) = max{ c(4.1.3.4.3), c(4.1.3), c(4) } _-3

_(4.1.3.4.3) _ -ma×{ c(4.1.3.4), c(4.1) } = 5

Figure 2.4 --Portion of a game tree showing the path to node <4.1.3.4.3>

The value asso(iated with some nr)de ,7 of a game tree by the minimax procedure

(._;ee Section 2.1) wilt I)e eli:noted I)y _J(J). lhen, if ,7 is a terminal node, u(cT) is the static

.ucdtLe asi_ned to that terminal position, and, if c'Jis an internal node, u(,;]) is the va|ue

backed.-up to node J by the minimax procedure. In the latter case, i.f node E has n sons,

viii) Ls given by:

t,(,7) ,, max{-v(,7.))I I j }. (2.5)

]n Figure 2.4, the nodes on the path from the root to node 4.1.3.4.3 are evaluated through

formula (2.5) while the other nodes (including 4.1.3.4.3) are shown as termLnat nodes and

are assi.gned arbi.trary values. (Nod_:s are labeled with their values.)

WhiLe the values v(;]) deal with the static aspect of a game tree, the quantities we

www.manaraa.com

78 CHAPTER IV

wi.t[introduce next deal more wi,th the dynami,c aspect of the tree when beLn8 searched by

the _-_ procedure.

For any node _7.j at depth d > 1, we defi.ne:

c(J.j) -- maw{ r <j..r }.

(E3y conventi,on, the maximum over an empty set i,s defLned to be -_I i,n particular,

c(J.l) = -co.) .For the root of the tree we also defLne c(_) ,, -co. The quanti, ty c(J) accounts

for the Lnformati,on provided to node {7 by its eider t)rothers. These values are i.ndicated

to the ri,l_ht of the g,,ame tree ,.;hewn i,n F:i,i]ure 2.4 for all. nodes on the path to node

4.r.._.4..._; only the nodes indicated wi,th squares are used in computi.n8 these values.

We fLnall.y deft,he for any node ¢}---Jr Jd at depth d > I i.n a same tree two

quantLti,es di,rectly a._;:;oci,ated with node _7 by the t_--/3 procedure. For L:--0, ..., d-l, Let

Ji. '= Jr Jd.-/." We deft,he:

_¢(,7) ,: max{ c(,:,li) J i. is elletz, 0 _ i. _, d-r } ,

/_C7) = -max{ c(,7_) I _ i,s odd, 0 _ _ ._d-I }.

It i,s conveni,ent to defLne these two quanti,ti,es for the root of the same tree by w(_) ,:- --co

and /'3(_.) , +co (whLch is con._{stent wi,th the definLti,on). These w- and /_-vatue9 are shown

Ln Fi.I]ure 2.4 for the node 4.1.3.4.3 along wLth their defLn{t{ons.

J

2.2.2 - Necessary and sufficient condition for a node to be explored by the oc-/J procedure

The foll.owLng temma ju..;ti.fLes the notations we just Lntroduced Ln the preceding

sectLon.

Lemma 2.1 :

A._,sume that, Lni,ti,atty, the root of a p,ame tree i,s explored by the tv--/3 procedure

throul_h the (:all.

AI.PHAf]E T A(root ,-co,+co) . (2.6)

Then, [f node _'t i,s examined, i,t is throug, h a call. of procedure ALPHABETA Ln which the

parameters alpha and beta sati.sfy:

www.manaraa.com

PART |: SEQUENTIAl. AI.PHA-BETA PRUNING ALGORITI4M 79

alpha = w(f_/), (2.7)

beta - _(J). (2.8)

Proof:

If J - JJ..... Jd denotes some node explored by the procedure at depth d > 1, let, as

before, r7i = Jl Jd-i, for 0 :_ i _d-l. Thus node _1 is the father of node (7, white, if

Jd _ 2, node ,_j.(jd--J) is the brother of J immediately precedin B _/ (and explored just
9

before _). Observe that, Lf Jd = 1, c(,_/O) = c(J) = -_o andtherefore:

w(J) = max{ c(Ji) I i is ellen, 0._ i :_d-I }

= - [--max{ c(,7_+1) I i is odd, 0 ._ i _ d-2 }]

_ _p(,_l)

(similarly, /_(/)) ,,- -w(Jl)). Observe also that, if Jd :a 2:

(J) = max{(,72), c(J) }

= max{ w(,72) , c[;Jl.(Jd--l)], -U[El.(Jd-l)] }

and that/_(J) -/_[J l.(Jd-.l)].

By the call of line (2.6), relations (2.7) and (2.8) certainly hold for the root of the

same tree, since w(_).---o_ and /_('_)= +o._. Then the proof follows by induction from

inspection of the procedure AI.PHAI]ETA, and from the relations we derived above. []

,1

The following theorem states a u_eful relation that characterizes the fact that a

node of a t.ree is explored by the _,../_ pruning, algorithm. This relation was first

established by Fuller, Gaschm8 and Gillogly [23] wi.th different notations in terms of the

Min-Max model..

Thn0rom 2.1'

As,.;ume that, initiait.y, the root of a I_ame tree is explored by the w-_ procedure

through the call

AL PHAt3ETA(root,-co,+co) .

Then, an arbitrary node () of the _,ame tree is subsequently explored if and only Lf

_(,;/)< /_O). (2.9)

....... ,_,,..

www.manaraa.com

I ,

80 CttAPTER. IV

Proof:

Because of the presence of (_ne (2.1) i.n the procedure ALPHABETA, the resutt

fottow.,., directly from tile resutt of Lemma 2.l. I

S_nce it w_|t I)e. more convenient in the fottowi.ng secti.ons, rather than w(J) and

/_('J), we w{[l. use the quantEtEes:

A(,;/) = max{ ¢(,7i) l i is etJen, O < i < d-I },

B(,;/) = max{ c(Ji) I i 'ts odd, O _; i _ d-I },

whore f7i is defined a_ hefore. Tile def_nHi.ons of /t(,;/) and B(,;/) are more symmetrical, and

relation (2.9) can atso be rewritten i.n a more symmetric:at way'

At,;) , B(_]) < O. (2.10)

3 - Number of nodes explored by the _-_ procedure: discrete case

As in [23] and [3.>], we wUt evaluate in this and the fottow_ng section the amount of

. work performed _n search{ng a rnndont unt[ornt l_ante tree usi.ng the w--/_ pruning atgorithm,

"[he defi.ni.ti, on and some properti.es of random uni.form game trees are gi.ven i.n Secti.on 3.1.

The amount of work performed by the w.-/_ procedure is mea._;ured by the number of

terminal nodes e×amined during the search and is evaluated _n Sec:ti.on 3.2.

3.1 - Random uniform _amo troe_

]n order to perform an anaty.,;i._, of the t_--/_ pruning algorithm, we wLtt Limit

our_el.ves and consider the fottowing class of game trees.

Dofinition 3.1 :

A game tree in which

(a) air i.nternal nodes have exactly n sons, and

(b) all. terminal nodes (or hotfoot positions) are at depth d

i.s ¢atl.ed a unifornt Eante tree of degree n and depth d.

A uniform t;ame tree wt'fi¢:h sat_sf{es the add_t{ona[condit{on

www.manaraa.com

PART I: SEQUENTIAl. AI.PHA-BETA PRUNING ALGORITI4M 81

(c) the value.'; assig, ned to all terminal nodes (or bottom values) are [independent

Ldent[icalLy distributed random variables

Ls called a ranclom ttni[orm. Rame tree, or_ for short, a r_Lg tree. i

Unless otherwLse specifi.ed, we wi.LLonly consider throughout a rug tree of degree rt

and depth d.

Si.nce the value backed--up to a node I)y the minimax procedure only depends on the

backed-up values of its ,.;ons, we immediately ob,.;erve that, by (:onditLon (c), the backed-up

values of all nodes at the same depth are also [independent identically distributed random

variables. In the remainder of the section, we wilt assume that the bottom values are

drawn from the fLni.te ,._et { x k :-- k/m I -nt < k <:rtt }, for some m > O, and we will. denote I)y

{Pi(k)}_rn._k_rrt or s_mply {'Pi(k)} the common probabi(Lty distribution for the backed--up "
i

values of all nodes at depth d--i (L. e., pi(k), is the probability that the value, tp(rt),

backed--up by the minimax procedure to somP. node E at depth d-i be k/m). In partLcul.ar,

{Po(k)} is the common probabi(LLy distribution for all bottom values, and {pd(k)} Ls the

probability distribution for the value I)acked.-up to the root of the rug tree.

The folLow[ing [emma ,.;tates the relations between these probabiL[ity distributions.

Lemma 3.1 t

For /. _- O, d-l, we have:

pi.,l(-m.) + ... + pi+j(k) =, [pi.(-k) + ... + pi(m)]n. (3.1)

Proof:

Let ;] be some internal node at depth d-i-L, then by equation (2.5), u(rT) < k if and

only if.-u(J.j) _ k, for j ,:-1, ..., n. Equation (3.1) follows easily from the fact that all

variables u(J.j) are independent, i

SLnce the quantity pi(-k)+ ... * pt(m) will occur again Later on, we define for

'i. = O, 1, ...'and -nt _;k ._ n=:

pi(k) = Pi(-k) +... + pi(m).

www.manaraa.com

82 Ct4APTER IV

For convenience, we al'.,o defi.ne pi(-nt-I) _ O. Note that piCk) is a non-decreasLnB fun(tEen

of k which sat_sfi.es _o_(-ttt--_) ,, 0 and pi(nt) , pi(-nt) + ... + pi(nt) = 1. By rewri.ting

equatLon (3.1), we see that Pi ._atLsfLes:

Pi+l(-k-l) = ! - [Pi(k)] n for i = O, 1,..., (3.2)

an(I, therefore:

¢,i.,2(k) --. I - {1 --[p_(k)]n} n for i -- O, 1, (3.3)

The following quantities wtlt also be u_efu[Ln Section 3.2. For _ = O, 1, ... and

-rtt-I _ k ._ m, defLne:

p_(k) --- i, [_i(k)], ..., [p_Ck)]n-I , (3.4)

and

%(k) -- 1 + [e,i(-k-l)] • ..., [e,_(-k-l)]n-I (3,5)

Observe that pi(-nt-l) .- o'i(nt) , J and pi(m) ,: cri(-nt-l) -- n.

Lemma 3.] establi.,;hcs the probabit{ty distributions for all the va|ues {n the nodes

of a rug tree. The next lemma establishes a similar result for the quantLties c(J) defined

Ln 5e(:tLon 2.

Lemma 3.2:

Let J.j denote any node at depth i, where i = 1, ..., d. If j, 1, cGT.j)= -.co. If

j _: 2, then the probabLtLty d_str_but(on of c(J.j), denoted by {qk(aT.j)}_m_;k_grn , sat(sfLes:

q_rn(_.j) + ... + qk(J.j) ,, [pd..i(k)] j-I . " (3.6)

Proof:

When j _ 1, c(J.j)= -co by def_n_ti.on. When j ;_ 2, equatLon (3.6) follow.,., from the

same arpum_nt gi.ven Ln the proof of Lemma 3.1. III

In order to evaluate,.through equaiLon (2.10), ttle probability that a termina| node _s

explored, we fir.-,t need to determine the probability distributLons for the two quhntLties

A((J) and 13(J). ThLs is (tone in the foltowLng.

www.manaraa.com

PART l: SEQUENTIAL AI.PHA..t3ETA PRUNING At.GOR]THM 83

Lemma 3.3:

Let _ = Jd-1 jl.Jo denote any terminal node.

(l) If Ji - 1 for all euett integers i in the range 0 _ _ _ d-l, then A(_'/) ,,. -co.

(2). Otherwi._;e, the probability distribution for A(_'J), denoted by {ak(J)}_m<k_nt ,

sat i.,';fre.,.;:

a..rp,(,7) + ... + ak(,:]) ' r[e [p_(k)] ji-I , (3.7)

where fhe product denoted by]7 e is extended to atl euen integers in the range

O_<i _d-l.

$Lmilariy',

(1 ') If Ji = 1 for all odd integers i in the range I _ i _ d-l, then B(,]) = -co.

(2') Otherwi.se, the probal)ility distribution for BC_), denoted by {bk(t_)}_m_k<tt_,

sati.,.,fies:

b.,(j), bk(;) ,, TTo ii- , (3.8)

where ttle product denoted by]-To is extended to at|. odd i.ntegers in the range

Proof:

We will onty con.,;i¢ler A(,'/) since the proof retative to B(_]) is the same. Part (1)

follows dire(try from the definition. For part (2), [et Ji denote the node Jd--I j/: We

note that A(,'/)_ k if and onty if c(J i)_ k for all even integers i in the range 0 _is; d--I

._;uch that j/_ 2. Since the variables c(,ti) are independent, equati.on (3.7) follows from

• equati.on (3.6) by ob_;ervi.ng that, in the product]-Te, a factor corresponding to j/. = J

amounts to 1. I

The last I.emma Ln this .-,ection states the probabitity of exp|oring a terminal, node.

Lemma 3.4: "

Let [] - Jd-I jl.Jo denote any termina! node. The probabili.ty _r(,_) that node

E Ls examined by the w--_ procedure i_, gi.ven by:

_(J) = I if Ji "-" ! for all. even integers i in the range 0 _ i ._ d-l,

tc(,']) = I if Ji = 1 for alt. odd i.ntegers i in the range I < _ .gd-l,

www.manaraa.com

8/I CHAPTER IV

(,7) = -m.-_m. -1 ak(J) [b_m(,7) * ... * b_k_j(,7)] otherw(se. (3.9)

Proof:

When Jt : ! for all even [nteEers i in the ranKe 0 _; i _ d-l. by Lemma 3.3 A(J) = -co.

t ten(:e A([)) , FJ(J) .-. -co too, and by Theorem 2.1 node J i.s certai.nty explored. Si.mil.arly

when j/, : I for all odd {ntegers in the range I < i _ d-l.
i ,

Otherwise, both A(_}) and B(,;/) are fini.te. Let A(c?),--Xk" We observe that

A(,?) • B(J) < 0 if and only if -m. _;k _;nt-I and -x m .,;B(J) ._ x_k_ 1. }_.nce, equation (3.9)

follows from Theorem 2.1 and the fact that A(_I) and 13(,_) are i.ndependent variables. I

Usi.ng equations (3.7) and (3.8), equal{on (3.9) (:an be rewritten as:

_(,t) = --n,....:_m--1%(';t)TI° [P'(-k-l)]J_I,

(,'l)--,,,._,,.-1 {F[_[ei(k)]j_:_-]1_ [_,_.(k-l)]ji-z } 130 [_,i(-j,-l_]ji-I (3.10)

(recall that pt(-m-l) ,, 0).

3.2 - Number of terminal nodes examined by the o_-/_ pruning algorithm = discrete case

We are now able to evaluate the amount of work performr.d by the w--D procedure

white searcl'Ang a rltg tree. As in [23] and [35], we have chosen to mnasure the amount of

work by the number of terminal nodes examined by the procedure. (We wi.lt also consi.der

briefly, at the end of the section, the total numl)er of internal and terminal nodes explored

'by the procedure as a measure of performance.)

Theorem 3.1 :

The average nutnbor, Nn,d(m), of bottom pos_t_ons examined by the

w../1 procedure {n ._;earching a rug tree of degre.e n and depth d, for whi.ch the bottom

values are distributed accord{ng to the di.screte probabi.ti.ty d[stributi.on

{Po(k)}_nt._k_m, i.s given by:

Nrt,d(nt) ,= nLd/2J + -nt._m. [Tle pi'(k) - T-[e Pi(k-l)]]-[o tri(k) , (3.1 l)

where the quantittes f,i(k) and o.i(k) are defined by equations (3.4) and (3.5), and

where the products denoted by T-[e and 1-[o are defined in l.emma 3.3.

www.manaraa.com

PART 1: SEQI.JFNTIAI. AI.PHA..BETA PRUNING ALGORITttM 85

Proof:

By deft.roll.on of the probablti.ty _'(,;/), the average number of bottom positions

examined by tile w.-/fl procedure i,s

Nn,d(nt) :, _ tr(r'/) ,

where the j;um is extendf:d to all term[nat nodes r;/--Jd.-J Jl'Jo, and is actual,ty, a

d-nested summati,on over the range I ._ JO < n, I ._ jl ._ n, ..., I _ Jd-J _ n. The summati,on

(:an be rearr_|nged as: '.

Nn.,d(m) -. Z_e tr(,7) + _--o w(,7) + Z.'tr(,'/) - ff(1 1),

where the three summations.; _--e, "_o and .,__'correspond to the three expressions for If(J)

gi,ven i,n Lemma ,9.4. The fourth term _r(!..... I) i,s subtracted from the sum (.;ince i.t iºs

counted by, both _---eand _iio. These two sums are easily eva|uated si.nce al,I. the terms tr(_jT_)

are 1. As _r(] I) i,tself is 1, we obtain:

Nn,d(m) ,. ,W/21+ ,Ld/2J _ I • _X' _r(,jt). (3.12) '

It i,s to t)e noted that the fi,r,.;t three terms correspond exactly to the number of termi,nal.

nodes examined by the w-_ procedure under opti.mal orderi,n B of the bottom values

(see [56, p. 201]).

We now evaluate the sum __'. ln._;icte the sum the terms tr(r;t) can be evaluated

throu[;h equation (3.10). We note thai all the summations r'e[ative to Ji, for i = o, 1, ..., d-l,

(:an be clone independently, ea(:ll one being the sum of a geometric: series. Using the

quanti.ti.es f, ii'k) and o'Jk) defined by equation._; (3.4) and (3.5), we obtain:

Z - [T[e]-Ie]-[oo-/k) - T[epi(m-l) , 1.
The theorem foll.ow.,., from thi.s last equati.on and equation (3.12), using the facts that

f.,i(rt_) .-- t_ and that o'i(m) .-- I. I

The formula of equation (3.11) can be ea,.;ily evaluated and provides us wi.th a

measure of performance for the w../1 pruni.ng algorithm. For some appl.i,cati,ons, however

(especi.all,y when the cost of generati.n[,, moves i.s greater than the cost of evatuati.ng

posi,ti.ons), i.t i,s more convenient to use the total number of nodes (internal and terminal.)

www.manaraa.com

86 CHAPTER IV

'explored by the procedure a.*_a measure of pertormanc:e. Let Tn,d(rtz)denote the averase

of thi,s number. The same way we evaluated Nn,d(m) , we can evaluate Tn,d(m) by summi,ng

the probabi.li.ti,es _'(,7) over all. nodes of the tree. We obtai,n:

where N_'_,ti(rtz) i,s tile averap, e number of nodes examined at depth i, and i,s di,rect[y

deri, ved from the expressi,on of Nt_,d(m) in equation (3.1]) by reptacin8 d by / and {PoCk)}

by {iOd_ifk) } (recall. that {poCk)} is the probal)i.li.ty distributi,on for the values assi,sned to

the terminal, nodes and that {pd_i(k)} is the probabi,ii,ty distri,buti,on for the values

backed-up to nodes at depth i.).

3.3 - Bi-valued rug tree_

Although it ',_t., relatively easy i.n most 8ame p[ayi,np, prol_rams to obtain (by

i.ns;pectLon of the evaluation function) an accurate bound for the range of d(st[nct values

a.,_;i_nr;d to the variolJ,._ posi.tion_.; of tile game, it i.s u.,.,ualty not so easy to deri,ve a I]ood

estimate for the probability di'.,tribut(on of these values. In the remai,nder of the secti,on

we w(l[study rup, tree.,; in which tile terminal, nodes can only lake on two d(sti,nct values_

anti we wi.ll.._;ee, i,n par li,culart that a change in the probabi,lity d(stribut(on of these values

c:an [em'l to yery i,mportant differences (n the i_rowth rate of NrL,d(nZ).

We wilt a._sume in the following that the values assigned to the termi,nal nodes of a

rug tree can only be ei.ther -/ or ,/ with respecti.ve probabi.|i,ties /--p and p, for some

p E [0, /]. Under the.,.,e conditions, the number, Tn,d(p) , of terminal nodes exami,ned by the

w.-/q proc:edure can be obtained as a parti.cuiar case of equation (3.]l) in whic:h rtz = / and

{Po(k)}_m..:.;k_<m. is clef(ned by pO(-l) ,-- l-p, Po(O) = O, PO(1) = p.

Theorem 3.2:

Let PO *" P, and, for / ----/, 2, ...j let p/. = / - p__/.

Tn,d(p) = nrd/2] . nLd/PJ . I , (Pe-l)(Po-l) , (3.13)

wi.th

Pe = $]e pi-*! , Po = Uo Pi'!
! - p_ I - Pi '

www.manaraa.com

PART 1: SEQUENTIAL AI.PHA--BETA PRUNING ALGORITHM ' 87

where the proclucl. _, T-[e anti]7"o are dr:fined as before.

Proof:

Choose m .-- I and define the probability distribution {Po(k)}_m_k<m by Pot-l) = l-p,

Po(O) = 0 and Po(l) :..-p. Hence Pot-2), O, Pot-l) = _0(0) = p ,, PO and eo(l) ,., 1. By

equati.on (3.2) we obtain:

_i(-2) _- O, _,i(--l) ,f _i(O) - Pi , _i.(1) = 1, for i.- O, 1,

"[hen equati.on (3.13) folLow._, clirectty from Theorem 3.1 and equations (3.4) and (3.5). II

Equation (3.13) can be evaluated very easily and, in particular, we note that for

O<p< 1:

Tn,d(p) > Tn,d(O) = Tn,a(Z) _ n[r//2] , n [d/2j - 1. (3.1,q)

7his last equation ._how_._:ha! Try,dip)reaches its minimum n [E/2] . nLE/2J _ 1 for p = 0 and

p .-. I. [hi_., is in agreement with the resul.t of Stagte and Dixon [56, p. 201] since i.t

<::orrer_ponds to the case when at: terminal nodes are assigned the same value and
o

therefore al.(possi.bl.e cut-off._ do occur. Equal(on (3.ld) also shows that TaM(p) admi.ts a

maximum for p C (0, 1); although the exact maximum cannot be readily obtained, we wiU.

derive a lower bound in the following. We fi.rst establish a preliminary result.

Lemma 3.5:

The unLque positive root, _'n' of the equati.on

_.n' + x. - 1 = 0

Ls in the (ntervat (0, 1). Asymptotically (for large n) it satisfies:

1 in n. (3.15)I "'_'n ~ ,3:

Proof:

A._ there is no aml:_iguity, we w(tt drop the index n from -_'n [n the foltowi, ng.

Let E(x.) = _.n + x. - I, note that g(O) = -1< 0 and E(l) = I > O. Since R'(_.) i.s

continuou.,_ and strictly i.ncrea.,_e_ for _ positive, the equation g(z)= 0 admits a unique

positive root, _', which is in the interval (0, 1).

We ob'._erve that equation _.a + _ _ I = 0 <::anbe rewritten as

www.manaraa.com

88 CHAPTER IV

I

I, (I,_....._.n-1)'
from which we deduce that

__, > 1 . (3.I6)
it* 1

On the other hand, since _rn __I - _', we obtain

n (_ - I) > ntn _ ,,ln(l-_),

which show.,.,,alongwitheqtJation(3.16),that

- < = tn,, • 0(',,-2) (3.17>1

Similarly, taF,inB the tosarithm of both .,_idesof equation (3.17), and using the facts that

1 _" _.n and that In _r .,. 1 1- = - -, we obtain:
t"

_. < I
1 + [n(rz/ln it+l) '

hence:

1 - _' > /In(n/In,z*1) * 0{(lIn rt)2] - 11Einn + O(l-In In ;t).

Equation (3.15) follow.,, dire(tly from the previous equation and equati.on (3.17). ' |

When p ,, _'n we obtain immediately that, for i = O, 1, ..., Pi = _'n.' Hence

Pe - [_tt/(l-_tz)][dl2] and Po _" [_'n/(l-_n)] [d/2j"

From equations (3.13) and (3.15) it follow.,_ that, for large n:

7"n,d(_'tt)~ [nAn n]d , (3.18)

while equation (3.1tl) show.,_that

TR,,v(O)- rn,,y('_),,, O(,,[d/2l). (3.19)

Equations (3.18) and (3.19) indicate that Tn,d(p) can be Earl]ely influenced by the

variation.q of the probability distribution for the static values. This result can be easily

6eneralized to Nn,d(m). In the next section, we wEl.l derive an approximation to Nrt,d(m)

which corr_:spon(l.,; to its worst case behavior.

4 - Number of nodes explored by the ot-_ procedure: continuous case

In this section, we derive an approximation to Nn,d(nt) by considerin8 the limit of

the finite series of equation (3.1 1) when nt tends to infinity while the discrete probability

www.manaraa.com

PART l: SEQUENTIAl. AI.PttA--BETA PRUNING ALGORITttM 89

distribution {Po(k)}..m._k_;n_. tends to a continuous prol)al)ility di.'Jribution. This

correspond,.; to the case studied by Full_:r, Ga.nchnig and Gi.llogty [23] and by Knuth and

lv_ore [35] when the termioa| nodes of a rug tree are all. assigned distinct values. In

parl_cu[ar, we will reestabli_,h (with a mu(h simp(er formula) a result of [23].

4.1 - Notationn and preliminary results

We fi.rnt _ntroduce the sequence of functions i/i} mapping the interval [0, l] i.nto

itself, and defi.ned recursively by:

=,

fi,<=>= t -{1 -[,r,;_l<,>]")" for i- t, 2.....

It i.s read_l.y verifi.ed I)y indu(tion on i that all. functions fi are strictly increasinE on [0, J]
/

and satis;fy fi(O) _- 0 and till) ,.- l, i. e., 0 and J are two fixed points of the functi.ons /'i, for

all n. and i. The, function fi w¢l! be .,;hewn to be rel.ated to the quantities _2i(k) defined in

Section 3.1. Simit.arly, in rel.ation to tl_e quantities p2Jk) and o-2i+1(k) , we defi.ne the

fol.towing functi.ons on [0, I]: for i = 1, 2, ..., let

si(x) =
"

If we defi.ne rill) ,, n and silO) = 1, we observe that all. functions r i and si are conti.nuous

on [0, I] (they are ac|ua[ty polynomials in _.)) and that rL is strictly increasi.n 8 whi.l.e s/. is

strictly (lecreasin8.

In relation to the two products]-[e and "rio, we also i.ntroduce, for i = 1, 2, ..., the

follow{n8 functions on [0, J]:

Ri(_) -- r l(z,) x ... _, rli./2](z.) ,

Si(z,) = sl(x) × ... _ s[i/2J(_') , t ,

where SI(_.)= 1. Ob._;erve here, too, that functions Ri and Si are potyoomials, and that)

when x. increases from 0 to 1, Rt(z.) incri:a.nes from I to n [i/2] whi.te Si(_) decreases from

n li./2J to 1.

www.manaraa.com

90 CHAPTER IV

L'astiy, for k = O, 1, ..., 2m+1, let

_k " mO(k -m-l).

Lemma 4.1 :

For i = 1, 2, ... and k - O, ..., 2m+1, we have:

' ri(_ k) = p2i_2(k-rn-l), (4.1)

si(_ k) = o.2i_l(k-m-l)' (4.2)i:

Proof:

We fi.rst show that for i = O, 1, ... and k = O, ..., 2m,1:

fi(_ k) = P2i(k-m-l). (4.3)

Si.nce fo(X) = x, it re=tows from the defi.niti.on of _'k that equation (4.3) herds When i = 0.

Assume, for [nducti.on, that equati.on (4.3) herds for i = h. Then by equati.on (3.3)

P2h,,2('k-nz-l) ,=,1 - {! - [fh(Ck,)]rt} n ,

which shows that equation (4.3) also hol.ds for i = h,l (from the definition of fh,l).

Observe that ri(_ k) = l + [[i_l(r,k)] + ... + [[i_l(_k)] n-l, then equat(on (4.1) fottows

from equatEon.,; (4.3) and (3.4). Si.mil.art.y, [f we note that st(x) can be rewritten as

I - {1- [fi_l(x>]"}"
si(x) - I -{1 '

equat[on (4.2) fotl.ow.,., from equati.ons (3.2), (4.3) and (3.5). II

4.2 - Number of bottom positions examined by the ¢_-_8 procedure; continuous case

Let u,_ return to the defi.n[ti.on of the sequence Tm ,= {Ck}O<k<2m.l" As w.a$

observed i.n Section 3.1 wl,th the sequence {pi(k)}, the sequence Tm i.s non-decreasi.ng and

defi.nes a parli.tion of the [nterva| [0, f], [. e.:

, 0 _. c O < _'1 "_"'"-<_2nt _ U2nt, J = I .

The norm of the part[ti.on Tm is

IiTmll ,, max{ r.k - a'k_1 I 1 < k _ 2m..! } =, max{ Po(k) I -nt s; k _;m }.

,In the rema[nder of the section we requi.re the fo[tow[ng.

www.manaraa.com

PART 1: SEQI.JENTIALAI.PHA--BETAPRUNINGALGORITHM 91

AssumPtion:

(AI) tim max{'p0(k) I -m < k _;tn } = O. Im,.-_co
i .

This assumption ensures that the norm of the parti.tion Trn tends to 0 when rtt tends

to _nfi.nLty. It also show.,., that, as nt tends to _nftntty, the probability of two terminal

nodes being assi,gned the same value vani,shes. This corresponds to the case s[udi,ed by

Fuller, Gaschni.8 and (;i,ttogly [23], and by Knuth and Moore [35].

Wi.th this assumption, we wilt now ._,eethat the finite series of equation (3.11) can

be replaced by an [ntegra[when m_oo. Th_s is estabti.shed [n the fo[tow[ng.

Theorem 4.1 :

Under assumpti.on (Al), we have:

1 ,
[_m Nn'd(m)-- "-" n[d/2J + _0[Rd(t).Sd(t).dt (4.4)rtt,.-)oo

where R'd(._.)[s the flr.,.,t dertvati.ve of Rd(x).

•Proof: '

S_nce there [s no riisks of confusi.on, we wi,Ltdrop, in the fotlowLnK, the i.ndex d from

the functions RE and Sd.

It follows directly from |.emma4,1 that for k ,, 0, ..., 2rn+l:

' R(_k) - N e pi(k-m-1),

StY'k) = "No °'i(k-m'-l)',

whi.ch show.,., that equation (3.11) can be .';imply rewritten as:

Nn,d(m) , ttld/2J + _'_ + [R(_k) _ R(_k 1)] S(_k)l_k;_'2m I - "

Let Ant denote the series defined i,n thi,s |ast equation.

Reca|[that R(_) is a potynomia[. By cons{deri,ng the Taytor development of R(Ek_I) ,

we obtain for /t = !, ..., 2m+!:

1
R(Ek) -R(Ek_ 1) = [Ek-Ek_l]R'(E k) + _[¢k-_k_l]2 R"(tk),

where Ek-I _ tk _ Uk" Hence:

Am = _- + [uk"Ek-l] R'(_.k) S(Ek)l._k_2tn I

+ _- + I [_k__k_l]2 R"(tk) S(_k) (4.5)l_k_2rn 1 2

www.manaraa.com

92 CHAPTER IV

Since R and S are polynomials, the quantity IR"(:;)S(:),)/21is bounded by some constant,

say' M, for any _ and :), i.n [0, 1]. In parti.(ular, the second sum [n equati.on (4.5) i.s bounded

[n module by M.IITmlI.[_'2,_,I-_O]= m.llTmlland therefore tends to 0 when m _ co since,

from assumpti.on (AI), liT,nil -, 0.

As for the fi.rst ._um [n equation (4.5), we observe that it corresponds to a R[emann

sum for the functi.on R'(x)S(_.) over the parti.tion T m of [0, 1]. Therefore si.nce, [n

parti.cular, this function [s continuous and since IITmll tends to O, the sum tends to the

[ntegrat of equation (4.Zl). This proves the theorem. []

In the remai.nder of the section we welt reinterpret the limit of Nn,d(m)estabtEshed

i_n Theorem 4.1.

Let C I)e the di._,lribution function of some conti.nuous probabit_ty density function E,

and assume, to sEmptify the discussion, that C(-l) = 0 and C(1) : ! (therefore, C(x) = 0 for

:_ -! and C(x) = I for x :z /). We define a sequence of functi.ons C m for m = O, 1, ... as

follow.,.,. For --m ,: k ._ m, Let =k : k/re. Function C m Ls defi.ned as the following step
l .

function:

f O if x < x m - 0,

Cm(_,) = C(_,k) if _'k "_= < x'k*J ' for -m_k _ m-I ,

1 if l=x, m._x.

The sequence of functions {C m} con.,_titutes a sequence of approximations to the

continuous fun(:tLon C. (It should be noted that the convergence of the sequence Ls

uni, form on the interval [0, I].) [he function Cm corresponds to the cumulative distr[buti.on

of the discrete probal)Elity distrEbuti.on Po(k),, Cm(x.k*)- Cm(xk-) associ.ated with the

points x k = k/m, for k : -m, ..., m.

Usi.n8 the approximation {Po{k)}_m._k<:m to the density function E, equatLon (3.1 I)

prbvides us wi.th an approximation to the average numl)er of bottom positi.ons examined by

•the w--/_ procedure in a rub trne [n which the bottom vatues are drawn from the conti.nuous

www.manaraa.com

PARr, I: SEOUENTIAI. AI.PHA-BETA PRUNING AI.GORITt4M 93

probabi,l.ity density functi.on _. When ,z becomes larger, the approximation becomes

better, and (clue to the uni.form convergence of the sequence Cnz) i't can actually be shown

(in a rather technical way) that the l,imil, of Nn,d(m) when nz --, co corresponds exactl,y to

the average number of bottom positi,ons examined by the w--_ procedure in the continuous

case. As a matter of fact, equation (4.4) cou|d be deft.red directly by considering a

continuous probabi,lil,y distributi.on rather than a discrete one in very much the same way

we derived equat[[on (3.1 |) [n Section 3. Thi,s result [s stated in the fottowi,ng.

Theorem 4.2:

Let fO(._) -- _., and, for i ,- 1, 2, ..., define:

i - {z

l-.f;_l(x.)

Ri(z.) .., rl(_) × ..., rli/2](=) ,

_i(z,) .-. Sl(=) × ... _ s[i/2j(z.).

The average number, Nn,d, of terminal nodes examined by the ez-/3 pruning algorithm in

a rug tree of degree n and ch:pl,h d for which the bottom values are drawn from a

continuou,._ distri,but_on is given by:

l ,
Nn,d __ n ld/2J., fo Rd(t)'Sd(t)'dt:" (4.6)

It is to be noted that, unlike the case of a discrete probabi.ti.ty di,stributi,on, when

the bottom values are drawn from a continuous distribution, the number of terminal.

posi.l,ions examined by the w--_ procedure does not depend on the d[[stribution function.

4.3 - Dit;crete ca|;e ver_;ug continuous ca_e

SLnce equation (4.6) has been derived as the ti.mit of equation (3.11), it is reasonable

to investigate the validi.ty of the approximal,i.on of Nn,d(nz) by Nn, d. As was seen i.n

Section 3.3, Nn,d(nz) stronp_,[y depends on the probabiti,ty distribution {po(k)}_nz<k<nz and,

i ,

www.manaraa.com

94 Ct-tAPTFR]V

therefore, we cannot expect Nn, d to be a (:lose approximation of Ha,dim) in air cases. We

wit[see below, however, that Nn, d provides us with a good insight into the behavi.or of

the w../3 pruning algorithm. Namely, we wilt see that it constitutes the worst case of

Nn,d(m) over all discrete probal)iltty clistributions.

Since Ntz,d was obtained as the limit of Nn,d(m) , it is sufficient to show that, for all

probability distributions {po(k)}_nt_k<m, we have:

Nn,d _ Nn,d(m). (4.7)

In order to prove inequality (4.7), it is convenient to give a geometric interpretation of

both Nn, d and Nn,d(nL).

Con_.;ider the curve (,E,) defined by the Cartesian coordinates ix., y) through the

parametric equations

(£): [x. ,_ Rd(r), y ,,Sd(t)],

where the parameter t varies in tile interval [0, 1]. The integrat of equation (4.6)

represents the area delimited by the curve (£), the z.-.axis and the parallels to the :),..axis

at the abscissas Rd(O), ! and RE(I),, n [d/21 (see Figure 4.1). Since Rd(O),-=. J and

Sd(O) = rtlrl/2J, the term nld/2J of equation (4.6) can be accounted for by the area of the

rectanp, le delimited by the _.-axis, the y.-axis and the tines x =, ! and y = nld/2J (tile tatter

line extends the curve (£) in a continuous way). FiF,ure 4.1 represents the curve (,C,) and

its ez.ten._ion in the case n .-, 3, d _ 5. The area below the unbroken |ines represents the

quantity Nn, d.

The sum of equation (3.1 J) can also be represented along with the curve (,L;). it

follows directly from the rel, ations of equations (4.1) and (4.2) that the terms of the sum

represent the areas of the rectangles de[imited by tile tines x. ,, R(_k_l) , x. = R(t;'k) , y = 0

and y .-:--S(_k) , for k .-- 1, 2, ..., 2nt.-l. The quantity Nn,d(m) represents therefore the area of

Fi.Bure 4.1 showfl below the broken I.[nes.

www.manaraa.com

PART 1: SEQUFNI'IAI. AI.PHA-BETA PRUNING AI.GORITt4M 95

Sd(t)

Inequality (4.7), then, follows directl.y from the fact that, when t i.ncreases in [0, 1],

R(t) i.nc.rea.,;es white S(t) de(rea.,_es.

5 - On the branchingfactor of the _-/_ pruningalgorithm

We have deliberately (hosen to introduce first the case when the bottom values of a

. p_.ame tree are drawn from a discrete prohal)i.tity distribution since it is of most interest in

practical app[ic:ation.,_.. The case. of a continuous distribution, however, |ends itself more

easi.ty to an analy.,;is, and, since it constitutes the worst case over all discrete probability

distributions, we will, in this section, examine the integral of equati.on (4.6) rather than

the series of equation (3.11).

............ ,, ,, ; ,;,;_,,;_.................,,,.,_;,,_,,,,,,=,_;: .. ,..'_;,.

www.manaraa.com

96 CttAPTER IV

5.! - Previous results

In Secti.on 1, we introduced tile I)ranchinl_ factor as a cost measure for the work

involved in searchin_ a tree. Rather than consi.cler_ng the number, Nn,d, of termina|

positi.on,._ examined by a ._earch all]orithm, a.,; a measure of performance of the algori.thm,

we could have con,._(cl(;red the totat number, Tn,d, of nodes (terminal and (nternal) exptored

(lurin_ the (_earch. In the case of the w.-/_ prumng alBorithm, s[nce Nn,d, gi.ven by

equation (4.6), does not d(:pend on the di.stHbutEon functi.on of the bottom values, we
,p

deduce that Tt_,d satE._fi,es:

Tn.,d _ I ", Nn, 1 *... * Nn,d.

It can be checkecl ea_;ity that 0 ._ Nnj_] ._ NR,_, therefore Nn, d ,c Tn, d < dNnl,d , and:

(rn,,)'/" - =
lhus, Defi.ni.ti.on 1.] provides u_,;w(th a measure of performance useful to compare search

at_,orithmn. In the foll.ow_n8, we review some of the resu|ts which have already been

presented i.n the tEterature.

Minimax t_earch

The mi.nimax search examines sy.,Jematica[ty all. nodes of a tree. It, therefore,

examines NR, d = nd terminal nodes i.n a uni.form tree of degree n and depth d, I.eacfin8 to a

branchi.n8 facfor

7_minimax(n) ---. n.

o¢-/3 procedure under optimal orderins

Stal]te and Di×on [156, p. 201] have shown that, when air possibte w- and fl-¢ut-offs

occur, the w../_ procedure examines

N.,d ,. n[d/21 . ,=Ld/2j_ 1

. terminal positions. In this case, the corresponcfin8 branchi.ng factor {s

_opt(n) --, hi2.

www.manaraa.com

PART l: SEQUENTIAl. AI.PtiA--BETA PRUNING AI.GORITttM 97

o_-fl procedure (experimental results from [23])

Based on a ._;eries of stmutatton re._utts, Fulter, Gaschnig and GittoKLy [23] have

argued that the formula

Nn,d :.- cCd).ttO.72d + 0.277

. constitutes a reasonable appro×imation to the number of bottom posi.tion._ e×amined by the

cv../t procedure for smaLL values of n and d, and that J _;c(d) _;2 (at least for the range of

values they con.,_idered). For purposes of comparison, let us assume that thei.r

approximation can be extrapolated for any n and d. Provided that c(d) l/d ._ I when d -_ co,

we obtain

ez..t(n) ,,, n0.72.

|n view of the restllte, of Sectlon 3.3, we can question the accuracy of the approxlmati.on

for large n since i.t foltow.,., from Theorem 3.2 that

I'm [J/a_..>ooTn,a(_"'_)] _ O(nAnn).

o_-/3procedure wilhouldeep cut-ofIs

Knuth and Moore [351have analyzed a simpler version of the (Y../_procedure l)ynot

consi.dering the possibilitiesof deep fur-ells. This /_-_procedureis the same as the

_,../Rprocedure except that no (Y-valuesare passed to the (y..[1procedure; i.nstead,the

tower value (Yis always;set to ..col)eforeexploring the successors of a node. Knuth and

Moore have shown thaithe branching faclorof thisprocedure satisfies

/_ _(n) --- O(n/qn /l,).

Note that, sEnce the _--procedure always explores more nodes at any depth i.n a tree than

the fult (Y.-/_ procedur(: does irl the same tree, _i_(n) provides us with an upper bound for

c../_(nJ. .

5.2 - Bounds on the branching factor of the o_-/_ procedure

In this section we will derive some lower and upper bounds on the branching factor

of the N--/3 pruning algori.thm. In parti.cutar, since the lower bound we derive grow.,., with a

www.manaraa.com

98 CttAPTER IV

a.,., n/Ln n, we wilt be ahte to conclude, using the result on the branch!n 8 factor of the

ce-/1 procedure without deep cut-offs estabH.,.;hed by Knuth and Moore in [35], that the
I

bran(:hi.n 8 factor of the w.-/_ procedure is @(n/In n).

We introduced in Section 4.] the sequence of functi.ons fi, i _ O, I, ..., from [0, /] to

Ltsetf, and we observed that all functions [i share the two fi.xed points 0 and 1

(independent of n). Another common fixed point, whi.ch depends on n, was Lntroduced i.n

Section 3.3.

Lemma 5.It

For a gi.ven n, all functi.ons [i' for i = O, 1, ..., share the common fixed poLnt

_'n C (0, /), the uniqtle posLti.ve root of the equation

r + x -- 1 = O.

Proof:

For clarity, we w_lt drop the index n from _'n in the foltowi.ng.

S[nce [0(_.)= _, _" Ls certainly a fi.xed poLnt of J'O; assume, for tnducti.on, that

[i_1(_) ,. _, then from the defi.nLt[on of "fi we have

-- I - {1 n -- I n = 1- = ,

. which show.,., that _' is a fi.xed point Common to all. functi.ons fp i = O, 1, Ill

Si.nce _'n i:._a fi.×ed point common to all functi.ons fi,/' " O, 1, ..., it i.s easy to evaluate

at thi.s point the functi.ons r i and si defLned i.n Section 4.1. For i = 1, 2, ..., we deduce that:

ri(.[n) = si.(._n) = .[n/(J - ._n) . (5.1)

In parti.cular, it foltow_ from t.emma 3.5 that, for I.arge n:

ri.(_n) = si(_ n) ~ n/[n It. (5.2)

Equations (5.1) and (.5.2) wi.l[be u.qeftl| to obtai.n the desired bound.,; Ln the remai.nder of

ttle section.

The geometric rc:presentat_on of equation (4.6), gi.ven i.n Fi.gure 4.|, makes Lt easy to

derive bounds on the quanti.ty Nn, d. They are stated in the folLowi.ng.

www.manaraa.com

PART 1: SEQUENIIAL AI.PHA-BETA PRUNING AI.GORITttM 99

Theorem 5. I

!

The bran(:hin8 factor of the _../_ pruning algorithm in the search of a rug tree of

degree n satisfies:

n/In n ,,, _n/(l-_n) _; _oz_/_(n,) _; _/n_n/(l-_n) ~ n/.J[_, (5.3)

for n = 2, 3,

Proof =

Since, when t increa._e.¢; in [0, 1], Rrl(t) increases white Sd(t) decreases, Lt follows

directly that for any w i.n [0, I] we have the foitow{ng i.nequatities:

Rd(W.).5"d(_) < Nn, d < Rd(_).Sd(O) * [Rd(l)- Rd(re)].Sd(_Z). (5.4)

If we choo_.;e w -_ _'n, we have Rd(_) - [fn/(l-fn)][d/2] and Sd(r_) : [fn/(l-fn)][d/2J. Since

Rd(I) = n tel2] and Sol(O) : n [ri/2j, Lnequali.ty (5.3) follows i,mmediateLy from i,nequali.ty (5.4)

and the results of Lemma 3.5. I

As an _mmediate consequence, we obtain the following.

Theorem 5.2:

The branching factor of the 0v-[_.pruninp, alger(thin in the search of a rug'tree of

degree n sati, sfies, for large n:

..[(n) = O(nAn n).

Proof:

The result comes directly from the tower bound ._n/(l-.En) ~ nan n of Theorem 5.1,

and from the upper I)ound _lq(n) obtained for the w--/3 procedure u)i.thout deep cut-offs,

which Knuth and Moore have shown to be O(n/tn n). I

This results confi.rm._, as was suggested by Knuth and Moore [35, p. 310], that deep

c:ut-offs have only a .,_econ(t order effect on tile behav(or of tile w.-/3 pruning algorithm. On

the other hand, it .,;how_ that ttle formula proposed by Fuller, GaschnLg and Gittogty Ln [23]

and mentioned in Section 5.1, if it constitutes a reasonable approxi.mati.on for small values

of n and d (the range of values they (onsi(lered is n . d _; J2)p is certainly not adequate for

large values.

www.manaraa.com

1O0 CHAPTER IV

We note that the bounds of Theorem 5.1 were obtained wLthout d[fli,cutty by

conveniently choosing just one point, _'n, on the curve (Z;) since it was easy to evaluate

both Rd(_tv) and S¢l([tr). In tile next section, usLng a different approach, we wLLt derive a

tighter upper bound for Na,d, and hence for)_w../_(a).

5.3 - Improved upper bound

S[nce, for d = l, 2, ..., Nn, d _ Nn,d41 .<;nNn, d, then, if (Nn,d)l/d tends to some ttmi.t

when d tend.,; to infi.ni.ty as an ez,el_ integer, this quantity tends to the same I.imit when d

tends to i.nfi.ni.ty as an odd i.nteger. fherefore, without loss of generati.ty_ we w(tt only

consider, i.n thLs sectmn, the case when d is an even integer. Let d = 2h.

For :_ iin [0, 1] and for i = l, 2, ..., we define pi(x.) = ri(_)si.(_).

Lemma 5.2:

All functions pi, for i = I, 2, ..., have the .,.,ameab._otute maximum, Me, in the

(nterval "[0, l].

Proof=

From the definitions of ri(_.) and si(_) we have for/, = 1, 2, ...:

and

lherefore, for i - 1, 2, ..., we al'..o have, from the def((niti,on of pi(x.):

pl.(_) .. p1[[__1(,._].

The temma foItow.,., by observ[n 6 that, for _ = l, 2, ...j [Z-! ts a one-to-one f|.|ncti,on from

[0, 1] to itself. II

Lemma 5.2 show£ that, in order to study the maxi,mum of pi(_), when _. _ [0, 1], it i,s

suffL(;ient to study time maximum of the polynomial

pl(_) ._ I - x.n l__-_fl .- x.r__ for _C [0, I]
I - X X tt '

I .

www.manaraa.com

PART I : SEQUENTIAL AI.PHA--BETA PRUNING ALGORITI4M lO l

Observe that Mn _. pl(_n) - [._n/('l-_.n)] 2, in particular, since it can be checked easily

that, for n - 2, 3, "",.J'n > J-n/(l+_)' it follows thai

M n > n for n _ 2, 3, (5.5)

Theorem 5.3

The branching factor of tile ez.-/_pruning algorithm for a rug tree of degree n

satisfies:

..t¢.) . ,f_., (5.6)

whore Mn is defined in Lemma 5.2.

Proof:

Fro.m tile. definition of R2h(t) , we obtain for h ,-, 2, 3, ...:

) 'R h(t) --- R2h..2(t).rh(t) , R2h_2(t).rh(t).

By multiplication by S2h(t) it fol|ow._; that
t w

R'2h(t).5;2h(t) = R2h_2(t).,_;2h..2(t).Ph(t). + R2h.2(t).S2h_2(t).rh(t).Sh(t) .

Since, for t ([0, I], all factors in this equation are non-negative, we deduce, using the

results of l.emma 5.2 and the fact that Sh(t) _ n when t C [0, 1], that:

R2h(t S2h(t)w) _ MnR,2h..2ft)S2t2..2(t) , n Mnh.. 1 r,h(t) "

Since, in addition,

t

R'2(t) S2(t) = r}(t) sj(t) _; n riO),

it follows thal for t ([0, I] and h ,-, I, 2, ...:

R'2h(t) S2h(t) ._ n Mn h'l [ri(t) * .., * r_(t)]. (5.7)

Let In, d be the integral defined in eqtJatioll (4.6). By integratin8 inequallty (5.7) over

[0, I] we see that]n,d _;atisfies:

In,2h < n Mnh"l [h(n.-l)] = n(n..l) h Mr=h'j

since ri(O) .-- 1 and ri(l) ,: n for i = 1, 2, This show.,., that

Nn,2h < n h + n(n-l) h Mn h'l ,

Equation (5.6.) now fotlows directly from inequality (.5.5). II

t

www.manaraa.com

102 CHAPTER IV

5.4 - Num'erical results

TabLe [5.1 ,_;ummarizes the results of thLs section. It presents the various tower and

upper bounds we have derLved for the branchLn8 factor of the _-_ prunLn 8 algorithm from

equatLons (5.3) and (b.6).

lower bound upper bounds

n [n/(l-[n) V_ n 7n,-_n/H-_' n) from [35]

2 1.6Ie 1.622 1.799 1.884
3 2:148 2.168 2.5.38 2.666
4 2.630 2.678 3.243 3.397

l ,

5 3.080 3.166 3.024 4.0P5
6 3.506 3.638 4.587 4.767
7 3.o15 4.0,08 5.235 5.421
8 ,l.30P 4.5,10 5.872 6.059

9 4.692 4.003 6.498 6.684
10 5.064 5.,I30 7.116 7,298
11 5.427 5.fl62 7.726 7.002

12 5.782 6.2,00 8.3,30 8.408
13 6.1,30 6.713 8.027 9.086
14 6.473 7.133 9.519 9.668
15 6.800 7.5,10 10.107 10.24.3
16 7.141 7.963 10.689 10.813
17 7.468 8.373 11.268 11.378
18 7.701 8.782 11.842 11.938
19 8.110 9.188 12.413 12.404
20 8.425 9.501 12.980 13.045
21 8.736 0..0o3 13.5,I5 13.593
22 0.045 10.3o3 14.106 14.137
23 9.350 I0.7Ol 14.665 14.678
24 9.653 11.I88 15.221 15.215
25 9.052 11.583 15.774 15,748
26 10.250 11.976 16.325 16,265
27 10.5,15 12.369 16.873 16,778

' 28 10.8,78 12.759 17.420 17.288
29 11.128 13.140 17.964 17.796
30 11.416 13.537 18.507 18.300
31 11.703 13..024 19.047 18,802
32 I 1,907 14.310 19.586

Table 5.1 - Bounds on the branching factor of the te--fl pruning algorithm

Atthough we have not been able Io gi.ve an esti.mate for the asymptotic growth of

v_--n, we can easity derLve an upper bound for thi.s quantLty by study(ng rub trees of depth

2 si.nce:

Mn < Nn, 2 _; 2n_n/(l-f n) -[_n/(l-_n)] 2 ,: 2n2/In n,

www.manaraa.com

PART I: SEQI.JENTIAL AI.PttA--BETA PRUNINI3 AL[;ORITt4M IO3

whi.ch shows that V_n _ O(rt/. n_). The numerical results of Tal)te 5.1 indicate that V_n

i.s a much better upper bound for 7_../_l'rt) than ,/nfn/(l-fn) for the range of val.ues we

have considered.

t

www.manaraa.com

104

www.manaraa.com

Part 2: A parallel implementationof the algorithm,,

6 - A parallel o_-_ pruning algorithm

When several processes are available a solution that comes naturally to mind for

lmp[ementing the w.--_ pruning algorithm is to have each process explore in parallel a

different subtree of the entire game tree. Each subtree would be explored using the

w--/_ procedure to back-up its value to its root, say some node P, then the value should be

reported to the father of node P in order to decide if the remaining brothers of node P

can be pruned.

A possible implementation for this solution is to have the parallel algorithm

organized around a stc_tic de('ompositi.on of the game tree, for example, by generating first

all nodes at, say, depth I or d(:pth 2 before starting all processes in parallel. As is shown

in [37], however, ._.tatic decomposition is not welt adapted for execution on an

asynchronou._; multi.process;or; this is especi.a[ty true when processes have different speeds

and the various _ubtasks have different sizes.

A d:yrt(_n=ic decon=posiliorr of the game tree, on the other hand, is better suited for

tile processes to adjust their loads according to their own speeds. We immediately

observe, however, that a dynami_c implementation will require a global data structure for

the processes to communicate among themr,etves. Since this data structure has to be

updated by more than one process in parallel, synchronization wilt a|most necessarily be

required to preserve the validity of the structure at any time_ in consequence, this wLLl

create a Large (and unwanted) overhead.

105

www.manaraa.com

106 CHAPTER |V

Most important is that, by explorin[,, in paraU.el and independently different subtrees

of the game" tree, we Loose the power of the _-/_ pruning algorithm. By LooMng back at

tile original alEorithm, we observe that its efficiency is mainly achieved by the fact that,

at any point dtJrin 6 the seato:h, the decision of pruni.n 6 branches is based upon all the

i.nformation previ.ou._l,y acquired ¢turinl_ the search. Obvi.ously, when different subtrees are

explored indepemdentLy in parallel rather than sequentiall,y, tess information is avaitabl.e

to each process, and, consequently, in the overall, more nodes have to be explored. As

will be seen, the parallel algorithm we propose below for the _--/3 pruni.nB does not suffer

from the toss of information communi.c:ated between the variout_ processes.

6.1 - A parallel implemontalion tot the o¢.-_ pruning algorithm

White proving the correctness of the ALPHABETA procedure, Knuth and Moore [35]

have establ.i.shed equation,., (2.2), (2.3) and (2.4) mentioned in Section 2. We now

reinterpret these equations. Let V ,-AI.PttABETA(F',_,/._), and Let V0 ,-MINI'MAX(P). It

fotl.ow_ directly from equations (2.2), (2.3) and (2.4) that when c_ </3:
b ,

if V.<;c_ then VO_.ev, (6,1)

if cv< V</_ then V0,. V, (6.2)

if V;;,. /3 then VO> /3. (6.3)

The value V0 (and the path in the game tree associated with that value) is the solution we

are seeking when the node P i_ the root of the game tree. Equations (6.1) to (6.3) suggest

that• the problem of fi.ndin[,, the solution V0 tan be viewed as the problem of tocati.nl_ the

root of a monotonic function over some interval using only asynchronous paratl.el.

evaluation of the fun(:ti.on. (this root fhldin B problem has been studied by Hyafi.t and

Kun6, see [37] and [4,1].) Several differences are, however, immediately notic:eabte. In

the root fi.ndin 8 prot)lem we are only looking for an approximati_on to the root and each

evaluation of the functi.on takes place at a sin_,te point. In the game tree searchi.ng

problem, on the other hand, we are interested in the exact sol.ution and each intermediate

search, or perti, czl search, executed throup_h the (;all. ALPHABETA(P,_,IR), examines an open

www.manaraa.com

PART I 2: PARAt.LEL AI.PHA--BETA PRUNING ALGORITHM IO7

interval: (w, _). Equation (6.2) shows that, provided the exact value ties in this open

interval, the ca[[returns [he exact soi,ution, and tt_Ls fermi.nares tile enti.re search. The

fotl.ow(n6 program g;Lves a parall.e[imp(ernentati, on of the _.-/3 pruni.nl]; al.gor[thm based on

this decompositi.on.

Program A:

i_i,obal inte_.er CALPHA, CBETA;

Initialization:

b.ePj_n_
C,'tI.PttA .= -+co;CBETA := +oo;

start processes P! ' Pk
end

Proces._+ f>j:

_>r A;,B, V.;

{(,4t, iij) /" S_I.E_TNEWlNTERVAL};
whtle Nj < By #,9.

i)ggL_n

:-- AB(Root,Aj,Bj,t.r_je_);
.... Vj ,_;/tj then

{(;BETA ,--.-min(CBETA, A _+1); (6.4)

" (Ay, B j):- SEt.ECTNEWIN_TERVAL}
enct

elr_e

• i! Vj_.: Bj then

{CAI.PttA :=--max(CAl.PHA, B i-l); (6.5)
(/t j, Bj) "= SELECTNEWlNTERVAL} .end

el,se
b_eaLn_
{.,,41.f.HA :,, CBETA := Vj}; (6.6)
return the solution: V;;
te r minate ,/

er_d

terminate
encl

The two gi,obal variables CALPHA an¢t CBETA define the current open. i.ntervat

knowrD to contain the .,+otution VO. (When this sol.ut(on is found, however, both CALPHA and

GBETA are .,;et to VO.) The interval (C41.PHA, CBETA) is initialized to (-co, +co)and Ls

updated each time a process fLni.shes a parti.aL search over the game tree. The procedure

www.manaraa.com

108 CHAPTER IV

SEI.ECTNI-WINTI'RVAI. u.,..es, without modifying tllem, tile variables CALPHA and CBETA (as

welt as A1, ..., Ak and BI, ..., Bk) to determine a new interval (A j, Bj) over which process

Pj will, proceed to a new partial search. This procedure is critical to the efficiency of

Program A and wilt be discus._ed in more detail in Section 7. For the time being, we will

only assume that it meets the foil,owing .,_pecifications. Given the variables CALPHA and

CBETA (and the variabl,es ,41, ..., Ak and B1, ..., Bk) , I.et CA,B) := SELECTNIiWINTERVAI.:

Ca) A = B if CALPt-IA _. CBETAI

(b) A< B otherwise.

As we are only clealLn6 with inte_ers, condition (b) is equi.valent to the condition A < B-l.

Since the two gl,obal variables CALPHA and CBETA are updated l,n parallel by

several processes, their use is restricted withLn critical, section (indicated in Program A

with curly brackets); the use of the procedure SELECTN|'WINTERVAL also occurs within

critical section..

Theorem 6.1 ',

At any time in the execution of Program A (outside a critical section), the

solution V0 satisfies either one of the foilºl,owinl_ two conditions:

CALPHA < V0 < CBETA , (6.7)

CALPHA ,, V0 ,, CBETA. (6.8)

Proof:

After initiali.zation, at time t O, the variabl,es CALPHA and CBETA are only modified

(i.n a critical, section) throu(,,h one of the instructions (6.4), (6.5) or (6.6) executed at the

time instants t 1, t 2, ..., ti, ... (with t i _ ti_ 1 for i ;_2). After to, CALPHA = -co and

CBETA = +co, therefore condition (6.7) is certainl,y satisfied. Assume that after ti_l, for

i ;z 1, conditi.on (6.7) or (6.8) is satisfied. If instruction (6.6) is executed at time ti by

process P j, it fo|tows from equation (6.2) that Vj = VO, therefore condition (6.8) i.s satisfi.ed

after t i. If instruction (6.4) is executed at time t i by process P j, it fol.tows from

equation (6.[) that V0 ._Aj, or eqivalentty VO< Aj.I (recall that both V0 and Aj are
/

www.manaraa.com

PART 2: PARAI.I.EL AI.PHA-13ETA PRUNING AI.GORITHM 109

integers); if, prior to ti, condition (6.7) were satisfied, then V0 < CBETA, which shows that

V0 < rnin(Cf3ETA, Aj, l) and condition (6.7) remains satisfied after til if, prior to t i,

(onditi,on (6.8). were satisfied, then CBETA = V0 < Ay+J, which shows that

rnin(CF3ETA, Aj, I) ._ CE_ETA and condition (6.7) remains satisfied. The same holds .when

instruction (6,5) is executed, m

Theorem 6.1, alone, with the specifications Ca) and (b) of the procedure

SELECTNI'WINTERVAL, proves the correctness of Program A in the sense lhat if the

program terminates it generates the correct sottuli,on.

I

Proving the termination of Program A, .on the other hand, requi,res additional.

speci,fi.cation of the procedure SELECTNI:WINTERVAI.. Observe, for examptte, that, if we

at,ways have Aj --. Bj-l, the opetz interval (Aj, By) does not contain any i,nteger (Aj and Bj

are integers themselves) and no solution can ever be found. If, however, we replace

condition (b) above I)y:

(b') /t _ B-2 otherw[_,e,

i,t can be shown ea.,_il,y that the l,ength of the interval (CALPHA, CBETA)de:creases at least

by I each time a proce.._,s completes a parlia[search. St,nee in a practical, irnpternen|ation

the i,nterval (-co, +co.) k_ actually a fini,te interval, in which we know that the sol.uti,on V0 is

to be found, we are guaranteed of the termination of Program A under condition (b').

6.2 - Some improvements on Program A

A feature of l,he parall.el imp[ementation presented in Section 6.J is that

intercommunication l)elween processes is reduced l,o a minimium, and confined to the

.sel,ection .of a new interval over which a partial search is to take pl,ace next. As a

con.,_equence, once a process has i,nitiated a parliatt search, it runs unti,[cornpttetiºon

ol)ttivious of the result.,., of the other processes. This can obviously be overl,y wasteful

since the interval ._.earched by a process might be ruled out by some other process very

soon after the beginning of the search.

www.manaraa.com

I 10 Ct4APTER IV

Thi.,; shorlcoming can l)e eliminated in several ways. First, _ process compl, eting a

parli.al search could check all other processes, cau_.;ing [hem, if necessary, either to abort

their searches or to readjust lheir intervals. This soluti,on, however, requires a I.ot of

book-keeping and becomes unpractical when a large number of processes are cooperating.

Another solution is to have each process modify its own interval by regularly

checking possible changes of the variab[es CALPHA and CBEIA during the search. Let

p

A' _ A < B _ B , and consider the two calls:

AI.PHABETA(Root,A',B') and ALPHAtEIA(Root,A, FJ).
p

It is easy to (;heck, by i.nduction, that if node P is explored by the second {:all, through

AI.PHAEIETA(P,w,fl), node P is also explored I)y the first (:all, through AI.PHABETA(P,(Y',_')..

Moreover, the bound:; w,/?, w' and/R' satir_fy:

w _ max{w',A} , /3 = min{/_',B} , if P is at eue,= depth, (6.9)

o¢ = max{w',-B} , /_ = rnin{/_.',-A} , i.f P i.s at odd depth. (6.tO)

]he procedure AB, below, is a rnodifi.cation of the procedure ALPHABETA, in wl'fich the

bound.,_ alpha and beta are regularly updated according to the rel.ati.ons (6.9) and (6.10) to

take into account the changes o! the two variables CALPHA and CBETA.

'.mt___ee_erp.!"_oc:p.dJ!r.e_AB(position P, !n}e_e__Eralpha, Lnt_ beta, boo[ean even):

determine the successor positions: PI 'Pn;
if n :-- 0 then

AB ::-. f(P)
e! e_

fo_Erj :.--I _!.te.p_! .untd n do

t := _A|3(P;,.-beta,-alpha,not even);
[f t > alphaJ then alpha__tl ..
i.f even then

(alpha :_- rnax{alpha,CALPHA}; beta :,. min{I)eta,CBETA})
else

(a[pha ",. max{a[pha,-CfJETA}; beta :,', mi,n{beta,-GALPHA})|
i.f_ alpha _ beta then £o,_q_todone
end;

clone: AB :,, alpha
end

end

A modified Alpha-Beta procedure

www.manaraa.com

PAINT 2: PARAI.I.EL AI.PIIA-BETA PRUNING ALGORITI4M 1 11

Relations similar to the relations (6.1), (6.2) and (6.3) hold for the procedure AB as

well. Consider the call:

V :.-- AB(P,_,fl,.t.rtje), (6.t 1)

and as before define V0 :.-. MINIMAX(P). Also, let A and B denote the values of the two

variables GAI.PHA and G_ETA when returning; from the cat[(6.1 l) ((. e., as of the last tLme

' they ate used durinl_ the execution of the call). For /1' and B' satisfyin g A' ;_ A and B' _ B,

define _ - max{az,A'} and/_'. " '' mln{_,/J }. We have the following.

Theorem 6.2

Wi.th the above notations, provided that:

A' _ V0 _ B' and _'<fl',

we have:

if V_o,,' then V0 <at',

i.f e,"< V</3' then V0 _ V,

if V;_/3.' then VOzB'.

Proot=

The proof follow,,,, ea,_ily (by induction on the depth of node P) from the

retati.ons (6.1), (6.2) and (6.3) and the relati.ons (6.9) and (6.10)_ II

Prob,,ram B, below, directly implements the relations stated in this theorem. Since

the analog of Theorem 6.1 can be proved for Program B as well_ i.ts correctt_.es$ (s a direct

consequence of Theorem 6.2.

p

Program [3:

F__q,!_s%t!n teP,er_CAI.PHA, CBE TA_
,

Initialization:

G/qLPH/I :,, -.o:,; GBETA ",.. +oo;

•._tart processes PI, ..., Pk
pnc_._l

www.manaraa.com

1 12 CI_APTER IV

Process P2:

i.ntep,er A .,.B., V i
_A-I,);-;)i{ S_I.E_TNI;WINIERVAI.];

wh['[e _Aj < Bj do
be&in

/_,/'.",', Af3(Root,A :,B :,lrue)i
• :.--max(A ;,G/_L4-i_'li;-Bj.= mEn(Bj,GBETA)|

if/ A i < B) then
b(__pj_b_...........

i_f VI _ Aj tllen

{Cf_ET"A := min(OBETA,A f,.l);
(Aj, B)) :.--SEI.ECINFWlNTERVAI.]
end

else

!t v)>./+j t.he__n_
bern.n_

{CAI.PHA:,, max(CAI.PHA,B i-J)I
(A j, Bj) : SELECTNEWINTERVAL}
end

eL.,,e

b_p_.Ln_
•)

{(..,Al.f HA :,, CBETA :,.+Vj}l
return the solution: V;I
ter minate ,/

end
. end

else

{(Aj, Bj) :,,, SEI.ECTNI'WlNTERVAL}

terminate
end

Procedures AI.PHAt3E'IA and AB implement two extreme alternatives in which the

boundt; alpha and beta are never updated and in which they are updated each time they

are uced. A more efficient implementation would be to update alpha and beta only when

chan6es have been made on the variables CALPHA and GE_ETA. This can be achieved very

easily by introducing, a 6tol)ai counter incremented by l inside the critical section citer

each of the instuction.,_ of Pro6ram l] modifyin 8 CALPHA and/or CBETA, and by i.ntroduci.n6

a counter local to each process to check if the latest modifications of GALPHA and GBETA

have been taken into account. Since the counters can only increase, no additional critical.

section is required. We wilt not present the implementation details, but the point, here, is

mainl.y to show that it is possible to implement (at a very Low extra cost) each process so

that it is continuing a parli.at search only if the result of the search can produce the

www.manaraa.com

PART 2: PARAI.I.EI.AI.HtA--BETA PRUNINGALGC)RITHM 113

[;olution or, at at lea._t, a recluction of tile interval in which the solution can lie. In

particular, we note that, in Program B, process Pj will terminate its search as soon as, for

example, CALPHA _. Bj or CBETA _<Aj, either condition ruling out the origi.nal interval

(Aj, B i). Th[¢ property will be taken Lnto account (n the analysts presented Ln Sect(on 7.

7 - Analysis of the parallel o(,-_ pruningalgorithm

We wilt proceed in this section to the analysis of the parallel algorithm described i.n

the preceding .,.,e(tion. Since the algorithm is organized around parallel, exe¢.utions of

partial searches, i.t iS the first thing we want to analyze. Most of this analysis ctiflers very

sli.ghtly from the anaty,,;i,,; developed in Sections 2 and 3, and we wilt only present i.n

Secti.on 7. I and 7.2 the main restllts leading to the evaluation of a partial search. The

overall evaluation of the algorithm-depends upon the procedure SELECTNEWINTERVALand

wilt be derived in Section 7.3.

7.1 - Condition for a node to. be examinedunder a partial search

s

As in Section 2, let c7= j!/d denote a node at depth d i.n a game tree and, for

0 _; i .<d.-l, let _7/.= jj Jd.4" "[he notations for r'(rT) and c(r]) rema{ning the same, we

now deft.no:

_'(J) .-- max{c(,Trl_i)I i is odd, i _;_._d },

_'(2) " max{c(,:.Id_i)I i. is e_en,I _;/,_;d }.

Gi.ven the two bounds a and b, we also defi.ne:

A'(2) = max{ a, w'(,7) },

B'(2) - ma×{ -.b,/_'(;/)}.

The analog of Theorem 2.1 for a partial search can now be stated in the following.

Theorem 7.1

. As,,_umethat the root of a game tree is explored through the call

AI.PHABE'IA(Root,cv,fl)

www.manaraa.com

I 14 CHAPTER IV

by some process executing the paral(el procedure of Section 6.1. Then, with the

above notations and provided that a < b, an arbitrary node _ of the game tree wilt be

subsequently expl.ored if anct only if:

A'(J) + B'Ct) < 0. (7.1)

Proof:

Tile proof is immediate by induction. I

Observe that, when the procedure AB of Section 6.2 is used instead of the

procedure AI.PHAf]ETA, condition (7.]) only remains a necessary condition for nodeE to be

explored throuF, h the (:all AB(Root,w,_). It is no tonl_er a sufficient condition si.nce, by

updating, the.bound,._ n' and /1 durin8 the execution of the procedure AB, additional pruning

miBht occur.

In the followi.n[,, evaluation of a patti.at search we wilt assume that the process

executes the procedure AI.PHAEIETA, and we will utilize condition (7.]) to characterize the

fact that node ,7 i _-;explored.
/,

7.2 - Average number of nodes explored under a partial _;earch

As before, we wi,ll con._ider a rub tree of degree n and depth d, and we will assume

f_r.,.,t that the bottom values are independent identically di._;tributed random variables

di._tributed accordinl_ to some cliscr_:te probabiti.ty distribution {Po(k)}_n_k_m, where Po(k)

is the probabiti.ty that a bottom value be a.,.,si[,,nedthe value x k - k/m, for -n_ ._ k _; n=.

Given two bound.,; a, and/t, we (lefb_e k! and k 2 by:

_k!, P _x'k 2"

Si.nce the values t_ and /1 could I)(., tmbotlnded, it is convenient to define x._m., j - -(o and

'nz+J = +o:. Throughout we w([t only (:on,.;icler the parti.al search corresponding to the cart

AI.PHAi]ETA(Root,w,_), and we w(It assume that _ </1, which can equivalently be expressed

aS "'rtt,-rl ._ k I < k 2 .._ n=+l.

www.manaraa.com

PART 2: PARALLEL AI.PHA-BETA PRUNING ALGORITttM 115

Using arlluments identical to those of Section 3.1, the probability distributions for

the quantLties A'(,.7) and B'(J) can be obtained immediately as a function of the quantities

(_i(k), for 0 ._ _ _ d and -nt-! _ k _; m. Then the probability _r(,_) that some node _'t of the

game tree be explored under a partial search can be derived from these results using the

characterization given by condition (7.1). As with Theorem 3.1, the following theorem

results directly from the expression for _'(,7). In order to present a uniform result

'(independent of the parity of d) in thi.s theorem, we depart sli.ghtty from the notatLons of

. Section 3.1, and the products denoted by 1-[e and]-[o are now extended over alt e_er_ and

odd integers _, respect(very, in the range I _ i _ d.

Theorem 7.2 =

The average number, Nn,d(m,w,tR) , of bottom positions examined under a partial

search is i_i.ven by:

Nrt,d(nz'_'t_) = "No Pd-i(k l) ×]-[e trd-i(k l)

+ kl.lE_k2_ 1 [1-[o Pd-i (k) - 1-[o Pd-i (k-l)] x H e trd_i(k). (7.2)

Proof:

As with the proof of Theorem 3.1, the restltt follows directly by summin_ the

probabilities _'(,_') over all terminal positions c't. I •

When assuming that all. bottom values are distributed according to some conti.nuous

probal>i.tity distribution (or, similarly, are all. disti.nct), again we can obtain, as in

Section 4, the averal_e number of bottom positions examined tinder a partial search by

considering the limit of Nn,d(m,w,tR)in equation (7.2). At this point it is convenient to

con,;icler the cumulative distribution for the value u(Root)with respect to the two points w.

and _. Na]_ety, 8i.ven the probabi.tity distribution {Pd(k)}_nt<k<m (or equi.va|ent, l.y

{Po(k)}_nt_h<m)._. . and gi.ven ez = x k l and/_ = Xk2 , we introduce:

at} t = pd(-nt) + ... * Pd(ttl) = 1 - pd(-kl-l) ,

. bnt = pd(-m) + ... + Pd(k2) = I - pd(-k2-J).

If, in general, we let:

t = pd(-m) + ... + pd(/t) = I "- f_d(-It-l),

www.manaraa.com

I 16 CHAPTER IV

and define i,n an obvi,ous way tile ftmcti.ons P and 0 on [0, J] by the correspondence:

Pit) -- T'[o Pd_i.(k),

O(t) - T1e d_i(k) ,

we can state the ti.mit of equat[on (7,2) [n the fo[towi,ng theorem.

Theorem 7.3: ..

Provi,ded that:

tim max{ po(k) I -.m, _;k _ m } = 0rtr4oo

and that:

li,m o.m ,= _, li,m bm : b,m.-_oo m-_oo

the |i.mi,t of Nn,d(m,oz,l_), when m _ oo, is gi,ven by:

Nn,d(a,h) : P(a).O(a) +/b P'(t).O(t).dt. (7.3)(1

Both Theorem 7.2 and Theorem 7.3 provide us with a cost of executLng a parti.at

search, measured by the number of terminal, posi,ti,ons exami,ned during the search, when

the bottom vatues are distributed accordi,n8 to e[ther a di,screte or a conti.nuous

probabi.IJ.ty di,stri,butiion.

In F[t_ure 7.J, we have ptotted, for :_ ([0, 1], the two quantiitiºes

C(x,.) - P(_).O(_:),

H(_) _ JO P'(t).o(t).dt.

.We deduce from equation (7.3) that Nn,d(a,b)can be expressed di,rectly from these two

quantities as:

Nn,d(o.,b) =, C(a) + It(b) - H(a) ,

wi,th an i.mmediate i.nterpretation i,n Figure 7.1. If we consider the case when the bottom

values are di,stributed according to a discrete probabiti,ty distributi,on, then Nn,d(m,w,_.), as

given by equati,on (7.2), can be expres,.,ed si,mil.arly as a functi.on of a m anti bm. The

functions G anti H are, i,n thi,s case, si,mpty repi,aced by step functi.ons, which coinci.cle wi.th

the conti,nuou,.; functi,ons C and t-/at the points t k ,, I - pd(-k-l), for -m _; k _;m.

www.manaraa.com

PART 2: PARAI.I.ELALPHA-BETA PRUNINGALGOR|THM 1 17

C(x.), H('_)

t 5o H(x)

5O

F{gure 7.1 - An interpretation for Nn,tl((l,b)

7.3 - The analysin of the parallel _-/$ pruningalgorithm

The resutts of Sect[on 7.2 sllow that the cost of executi, ng the patti.at search

c:orrespondi_ne, to the cart

ALPHABEI_A(Root,w,/?)

c:an be expressed by:

c(a,b) ,= G(a,) + [H(b) - H(a)],

www.manaraa.com

} 18 Ct4APTER IV

with

a ,-- Proba.{ V _ t_ } , b ,, Proba{ V </q. } ,

where V [_ the random varial)[e representin_ the value backed--up to the root of the game

tree (by the M]NIMAX procedore). Giiven tile probab[tiity distributiion for tile random

varial)l.e V, we have a one-to-one correspondence between iintervals to/, i_) of (-co, +co) and

intervals (o., t)) of (0, 1). LJ_;i,ngthis corrl,.spondence, we w[|[only talk in the fol.towing

about patti.at .,.,earcl'tes over intervals of (0, 1).

AIthoup.h the two functiions C and H are readily computed numerically, they do not

tend themselves very easily to analyst,., and, in the remainder of the secti.on, we wLl.t

consider an approximation su86ested by Fi.I]ure 7.1. We noti.ce i,n the example depi.cted in

thi.s fi.gure that C(_.) remains nearly constant when z. vari.es i,n the i,ntervat [0, 1] and that

t-t(_) varies almost tinear|y on the same interval. Wl_iite the numeriicat results presented i.n

Figure 7.1 correspond to a partiiat search of a ru6 tree of degree n =3 and depth c/ = 6,

nurneriical results obtained with other values of n and d actually show that the

approxi,maUon of C by a constant and of H by a linear functiion is even better for large

values of r_ and c/.]hLs its especially true in an open i.ntervai contained i.n [0, I]. In

consequence, we wi.tl, assumP, tin the foll.owin 6 that the cost of executi.ng a partiiat search
t

over any i.nterval (a, 6) of [0, l] Ls exactly 6i.ven by:

c(_,b) = p + q[b - a], (7.4)

where p and q only depend on the rug tree itself (i,. e., on n and d). Numeri.ca| resu|ts, not

presented here, have been run for n ,: 3, 4, 8, 16 and 32 and for 2 < d _ 8, i,t turns out that,

i,f, obvi.ously, p and q are very dependent on n and d, the rati,o k ,, p/q does not show a

[arse variati.on and lies typically i.n the ranse 0.2 ._k _ 0.4.
e

Without toss of generatiity, we wiitt normati.ze the cost c(a,6) of equati.on (7.4) by

assumin6 that q --- I (hence p = ;k) and we wilt consider throughout that:

c(a,b) = k + b -.a ,

or, equivalently, wi.th 6 ---a + h, that:

c(a,a+h) - ;),+ h. (7.5)

www.manaraa.com

PART 2: PARALLEL AI.PHA-BETA PRtJNING ALGORITHM ! 19

"This cost wil.t also be taken, in the following section, as the time for a process to execute

a partial, search over the interval Ca, b) .- Ca,a+h).

7.3.1 - An analysi_ of the parallel implementation: Optimal decomposition

Given the co_st of a partial..,,earth through equation (7.5), we wi.tt determine Ln thi.s

section the optimal decomposition of the interval [0, 1] and, with this result, the optimal

procedure SELECTNEWINTERVA(., introduced in Secti,on 6.1 for k P. 2, processes can be

ctefLned.

As an example, we first examine 111ospecial case when the interval, [0, I] is spilt

into k subintervals I j, ..., I k searched in parall,et by processes Pj, ..., Pk, respectively. Let

sL be the size of]i, for i ,, /, ..., k, with s! + ... + '_k " j' Under thl,s decomposi,tion, process

Pi will. find the solution, with probabil,ity st, after a cost X * t i. Therefore, the averai_e

cost (or time) to find the solution is, in this case, simpl,y given by:

' t = sj.O,'_sj) * ... * sk.O,*s k)

= _ + $ + ... + S ,

for which the minimum, TO, is achieved when si = _, for /. = 1,..., k (recall that

s t + sk = 1). This yietds:

TO - X+_/..k

The decomposit{on of tlle interval [0, I] presented in this example i,s the simple,,[one, and

it does not allow any feedl)ack between the processes since the k partial, searches cover

the whole interval [0, I], The example confirms, however, the obvious fact that, in order

to achieve tlle minimum cost, the k subinterval,s searched by the k processes should be of

equal [enl_th.

In order to introduce some feedback between the processes, we now consider a

further decomposition of the interval [0, I] iti,ustrated in the diagram of Figure 7.2 in the

case of two processes.

www.manaraa.com

120 . CIIAPTER IV

I -_ t ' VH.,,'H.,ti/A I _ W/.,.'HHI.,.'A

0 _ 6 c d I

Fi.Bure 7.2 - A decomposi.tion of tO,J]

The two processes F'! and F'2 start explorinB i.n paraLtel, the two subintervals [a, b] and

[c, <t], respect|very.]f either process finds the sotut[on at the completion of this first

search, w_th probab[l[ty (6.-_) or (E-c), the execut{on terminates w[th a cost of either

O,.b-a) or O,.d-c). Otherw(se, consider that process P! finishes first.]f [t finds out that

the sotuti.on ti.es i.n the interval [0, a], we know that, with the imptementat_on proposed [n

Secti.on 6.2, process t72 w(lL terminate i.ts search immediately after and, therefore, both .

processes can start simultaneously new par'tia[searches within the i.nterva| [0, a]. If, on

the other hand, process Pi finds out that the solution ties [n the interval [b, 1], [t w[tt
i

start arl)[trari[y a patti.a[search over an [nterva| w(thi.n [b, c] or [d, 1] white waiti.n 8 for

process P2 to complete [ts initial partial search and, possibly, wilt readjust its search as

soon as process P2 fi.n[shes.]f we assume that both intervals [o., b] and [c, d] are of equal

tenBth, both processes w(IL finish their initial searches roushLy at the same time. We witt

neBI.ect [n the foltow[n_ the detay involved in making the decision as tO whi.ch sub[nterva|

actuatty contains the so[ut{on, and we w(lt assume that, [f the sotut[on has not yet been

found, the processes restart a new part|a| search simultaneously.

According to this decomposition, k subintervals are [n[tiatty searched by the /c

processes and, i.f the solution is not found during this fi_rst trial, it is known to ti.e in I Of

h*! subi.ntervals dependinp_, upon the outcomes of the fi.rst parti.at searches. Thus k

subintervals wi.ll, be searched clurin[,, the second trial out of a total of k(k.l) poss[bte

subinte'rvals. In genera|, if not successful after the i-th trial, the k processes wi.tt start

simuLtaneousLy k new parl_a[searches over czi ,, k(k+l) i poss[bl.e subintervals during the

(i.* l.)-sttr_at.

Let ho.,= 1, and, for i = 1, 2, ..., tet hi. be the total Length of the i.nterval [0, 1] that

st[tl could be explored after the i-th triaL. Then, for i = 1, 2, ..., hi_ ! - hi measures the

www.manaraa.com

PARI 2: PARAI.I.EL ALPHA-BETA PRUNING AI.GOf_IIHM 121

total length of all. ai ! sul)intervals that could t)e searched during the i-th trial.. It also

measures the probabULty that the sotuti.on be found at that time after a cost ct; gi.ven by:

c i = iX + (h 0 - hi)leO] + ... + [), + (hi_ 1 - hi)/aZ_l] ,

assuming that the ai_ / subintervals that could he searched during the i-th trial have all.

the same tength: (hi_ / --hi)/ai_ 1.

The total average cost, T, follows immediately. We have:

T .-. _ (hi l-hiLcZ,

T = Z D,(hi_ 1 - h i) + Z [(hi_ I - hi) __ (hj_ 1 - hj)/aj_l]

T=), Z. h i + Z hi. (h i -hi.)/a i (7.6)t_O " l_.O • , I ."

The foil.owing theorem .,_tates the optimat decomposition {hi}i.>O teadi.ng to the/

minimum average cost of expre:,sion (7.6). For k _ 2, we wttt consider the following

sequence of intervals (recall that aj .--k(k*l)J):

Ao [t/00, +"-'),

Aj = [l/a), (k-l)A,j), for y -- 1, 2,...,

and

t3y = [(k-l)/nj, l/aj..l) , for j, 1, 2,

Theorem 7.4:

As.,;ume k # 2, and tot CkO,)denote the minimum of expression (7.6) over all.

possible decompo.¢,ition_ {hi}i;_O.

(a) If X (" Aj, for ,.;()me j = O, 1, ..., the minimum of expression (7.6) is achieved for:

h 0 hi--. 1 and h j, 1 = hi, 2 =. = O,

yielcling:

CkO,_ _ (j+ l A + 1_
aj '

(b) Otherwise, i.f _ (? /3j, for some j _ 1, 2, ..., the minimum is achieved for: ,

l a/(1_-1._.1 -_) and hi. 1 = 0h0 hi.. 1 = I , hi,, _ = hi, 2 ,

yielding:

. _1___ l.j(I _x)2

www.manaraa.com

122 CHAPTER IV

Proof:

Observe f(rst that the decompos[ti.on {hi]i> 0 satisfies=

I _ h0;_ h I ;z..._ hi_ 1 _. h i_..._O.

As.,;ume that X ;_ l/nj, for some j _. 0. Given any decomposi.ti.on {hi}i;_0, consi.der

another decon_position {R'i}_0 defined by:

f ht 'tf i.<.j,
gi [0 tf i _. j.l ,

and tet T' clenote the expression (7.6) where {hi.}i;_O i.s repl.aced by {gi}i._O" We have:

T- T." = X Z hi • Z 1 hi (h_- hi, l)i,_2.1 " i._.j*J " "

• aJ .II'--L- (hj.l - hi.2)]. [X - l]hj hi+ 1

} _ .._1 hi. (hi. - hi.2)]
!_

;_ 0 . 0 * [hi * (_ j.]
I 1

,if

• _ aj,,l I hj*l (hj.l - hi.2) ;_ O,

whi.ch show.'., that T is mini.mized when hi --.0 for/, ;_ j.l.

Assume now that X < (k.-l)/aj for some j ;_ 1. Assume furthermore that hi_ 1 =, 1 for

some t;, I _ t; .-.;j (recall. that h0 ----1). We have:

X < (k-l)/aj < (k-l)/a i ,

whi.ch show.'., that the derivative, ti., of T with respect to h i satisfies:

t i = 24 hi. *)" _ ai-l--l--hi-' _ 4 hi*l

I_ -'1-- _ .J_ hi..1.-- 2 h i + _, - ai_l ai

_. - .l-hz+ 1 < 0/< - 2 (1 -- h i) ai

"this ta_t inequat(ty ,,how,,, that T decre.a,,;es when hi increases from 0 to. I and that,

therefore, tlie mini.retire of T is achieved when hi = 1. Since h0 ,, 1, we have shown

part (a) of the theorem.

Assume now that ;k (" Bj for some j _. 1, i.. e.:

(k'-l)/c_j :g ;k < l/aj.. 1 .

In parti.cutar, ,.;[nce k _. 2,), a l/a1 and), < (k-l)/aj.. 1. it fol.tows from the above proof that

h 0 hi.. 1 - 1 and that hi, l .-- hi, 2 0. Hence, express(on (7.6) becomes:

_ I_L. .. (z--l"_.l- _') h j * /-. h 2T --..iX . al.. 1 --'-["_1 J'

www.manaraa.com

PART 2: PARAI.LEL AI.Pt_A-BETA PRUNING ALGORITHM !23

from which part (b) of tile theorem foll.ow,._ (lirectty. I

Theorem 7.4 states as a functi,on of _k, the i,ni,ti,a| cost for a parli.at search, the

optimal, decomposi.ti.on of the interval [0, 1] and the corresponding opti.mal, average cost

Ck(_) to fi.nd the sol.uti,on u.,;in_ the paralte[i,mpLementati.on wi,th k processes. In

Fi,gure 7.3,we compare tile cost CkO,) with the cost CO,) of the original (seq(sentlat)

algorithm as pre._ented i,n Section 2.

,

3

k=2

1

0 _-t I...... I 't------+-- I I" 't t -t.... -+-------+
0 0.2 0.4 0.6 0.8 l.O !.2

;k

Fi.Bure 7.3 --Rel.ati,ve .,;peed-.up of the parattet imptementati.on

Since i,n the orii_i,nal c_,.-_prunini_ algorithm the whore i,nterval [0, 1] i,s searched at once,

CO,) can be obtained directly from equati,on (7.5) and is given by:

C(),) -, c(O,l) _, _, + 1.

......................:,,,, i

www.manaraa.com

124 Ct4APTER IV •

]he various turves of Fi.gure 7.3 represent the speed-up Sk(X)_. Cf_)/Ck(3,) achi.eved by

the parallel i.mplementati.on with k processes over the origi.nal, algorithm for k = 2, 3, 4 and

for tile {[mitin 6 case k = co. In tills l,atter case I/eL0 si.mp[y reduces to 0 and we al,ways

have X C AO: It fol,tow._ from l*heorem 7.4 that Coo(;),) ,, X and therefore

Sco(X) = X * I .. 1. I.
X X

7.3.2 - Implications of the results and validity of the ast_umption8

l.et us examine the results of the preceding secti.on as i.ttustrated in Fi.gure 7.3. We

noticed earlier that the [nit[at cost of a partial search, X, typi.cal.ty ties in the range

(0.2, 0.4). We ob<.;erve from Fi.gure 7.3 thai when k = 2, for exampl,e, the parallel

i.mptementation can improve upon the original. (soquent[al,) _--/_ pruning al,goritl-|m by a

factor wl'fic.hcan be larger l,han 2whenXties in the range of practical interest. Moreover,

when X becomes smal,t, the improvement actual,ty becomes unl)ounded, as can be seen by

c:hoosing X ,, l/nj for whi.fh we have: Sit(),) = (c_j , l)/(j + 2). An immediate consequence

of the resutt._ of Secti.on 7.3.1, therefore, is that the _-.ppruning al,gor[thm (as described

i.n Section 2) is not opl,imal,. The same strategy used for the paral,tel, imptemet'ltat(on with

two or more processes is obvi.ously also '.;uital)te to the case of only one process, and, i.n a

s{mitar fashion, we can deduce an optima[decompositi.on of the interval [0, 1] for ttliS case

as welt. Although the results of Theorem 7.4 are not applicable for the sequential case

(only the first part of the proof is relevant when k - 1), simple calculus shows that when

;), C (0.2, 0.4) an i.mprovement between 15X and 25Z can be achieved over the orEgi.nat

al,gorithm, and this constitutes a substantial gain.

The anaty.,;Es (h:vetoped in Section 7.3.1 relies implicitly on the knowledge of the

distributi.on for the value V0 backed..up to the root of the game tree. In parti.cutar, when

we .-.;tate, i.n Theorem 7.4, the optimal, decompositi.on of the interval [0, 1] in terms of

{hL}i__0, we real,ty need to know the distribution of V0 to actual,ty i.mptement the procedure

SELECTNEWlNTERVAI,. accordi.ng to this opti.mat decomposi.ti.on. When nothi.ng i.s known

www.manaraa.com

PARr 2: PARAL.I.EL AI.PHA-BETA PRUNING AI.GORITt4M 125

• about the distribution of Vo, the results of Theorem 7.4 statinB the optima[cost Ck(;k) can

be simply reinterpreted a.,; a lower bound on the cost achievable by an algorithm usin8

thi_ _trate6y of decomposi.tion with partial, searches.

In pra(:tice, however, although the distribution of V0 is not known exactly, some

i.nformation is actually available from the evaluation of the game tree at previous moves.

]n chess, for example., unless an important capture was hidden from the horizon of the

search, successive evaluations of the game tree w(Lt yie[t't cLoseLy related values, and Lt is

common to be able to pr(:ctict a priori an intervat which contains the sotIMon V0 with soma

prol:_ability p, where, typic.arty, p _ 80_. in the actual i.mp[emnntation of a ctless program_

thi_ interval is examined first, and, if the solution _s not found after this trial, the whole

_ntervaL to its Left (or to its right, depending on the outcome of the first search) is

examined next. See Fisure 7.4 (a).

0 !

_llllllllllllllliflllllllrl I

(a) Actuat decomposition
/

1 2
o 1

Lo f.tj/,ej.¢. ,,//1..,_//j..ej j,,,jjj jjfljjAV.,r,_'2"77,'r,1."/.17/Z,1..","J.1,1,"TfTf JTJJ_

1
(b) Optimal d(.,composition (_ _ _)

FiEure 7.4 - Comparison of the aclual and optimal, decompositions of [0,1]

Under these conditi.on._, Let u._ consider the cost of fi.ndin8 the sotuti.on V0 w(th I process,

and let us assume, to give an idea, that _ _ 1/.:]. For purposes of comparison_ the optimat

decomposi.ti.on (:an be _hown, in thi.s case, to be h0 ,_ 1, hj ,. 2/3 and h2 = h3 = ... _- 0, see

Figure 7.4 (b), yie[din8 the minimum cost TO =, 10/9 .; 1.11, while the cost of the origi.na[

al.gorithm i.s simpty given by T 1 = ;k • I = 4/3 .,, 1.33 (an increase of 20_ over the optimal

cost).

www.manaraa.com

126 CHAPTER IV

Tile cost associated with [tie actual decomposition is easil.y evaluated and is given

by:

T = p.O, _' p) * :c.('_,*p *)` *:_) * (1 - z.- p).O, + p *), + I - z. -p)

= (2-p)), * p + 2 * (l-p-_.)2,

from whi.ch we deduce that the worst case, achieved for z = 0 or z = ! - p, is given by:

T 2 - (2), .,. l) - (), • 1) p ",. p2,

correspondinE_ to 72 --1.24 when)`- 1/3 and p .-.0.8. Although this worst case still.

corresponds to an i.ncrea,._e of II.6Z over the optimal cost, it i.s an improvement of 7_ over

the cost of the original algorithm. Yet, in view of the optimal, case, one could think of
e

i.mprovi'ng the cost by reducing the first interval so as to have p =, 1/3, but then this woul.d

increase the worst case, whi(h would, in fact, correspond in thi,s case to the cost of the

original, algorithm, therefore, showing no i.mprovernent. (Looking at the best case,

however, .we could achieve the optimal, case in this way, but onl,y with the risk of

aggravating the worst (ase.)

The results we have developed rel,y on several, si.rnpl.ifying assumptions, and we

would {Eke to concl,ude this ._ection by examining their validity. While equations (7.2)

and (7.3) provide us with the exact cost of a partial search over some interval (w, Iq) (or

((_,b) equivalently), measured by the number of terminal position..., examined during the

search, we have used the approximation given by equation (7.5) to deri,ve the results of

Section 7.3.]. As we have mentioned, however, this approximation seems to I)e reasonabl.e

and more and more accurate a._ the game tree becomes larger, and we (Io not feel, that this

approximation leads to a larl;e error in the analysis. In order to check on the vali.dity of

thi,.-_ approximation, however, we have run a series of simulations and compared the result._

with the results predi(ted I)y Theorem 7.4, where), was computed numerically by usi.ng a

least square approximation to the function._ C(x.) and H(_)on the i.nterval. [0, 1] (see

Figur(: 7.1). The sirnulati.on results were very consistent with the analytical results and

showed an actual, improvement over llhe original algorithm between 57_and 10'/ better than

the improvement pre(li(ted by the theory.

www.manaraa.com

PART 2: PARALLEl. AI.PFIA-BETAPRUNING AI.GORITt4M 127

The si,mlJl,ati,on was also aimed at verifying another simplifying assumpti,on we have

used i,n the analysi,._. WhiLe equation (7.5) provides us wi,th the _uzconclit_orml average cost

of a par'ti,aLL._earch over an interval Ca,6), what we really need to derive equati.on (7.6) is

the cost of a partial search over an interval Ca,6) corLcli.tionned by the fact that the

._;oLLuti.on Lies in somn interval Ca', 6') (possibLy the same i,nterval). Here, too, the

simul,ation results were useful to vail,date this simpl,ifying assumpti.on.

8 - Conclusions and open problems

We have presented i,n the fi.rst part of the chapter an anatysi.s of the performance of

the w--/_ priming algorithm for ._;ear(:hing a uni,form tree of degree n and depth d when the

values assi,gned to the terminal nodes are independent iºdenticall.y distri,buted _'andom

varial)[es. The ana[yc, i,._ takes into account l)oth shall.ow and deep c:ut-offs, and we have

also considered the effect of equalities between the values assigned to the terminal nodes.

A simple formula was derived, in Section 3, to measure the number of terminal

nodes examit_ed by the w.-/_ procedtlre when the bottom values are drawn from a fi,nite

range accordinF, to an arbitrary di.screte probabi,lity distributi,on. Although the formula can

be easily computed numeric:aLly, a direct analy.,..is is made difficult by the presence of the

probat)i,ti.ty distributi,on. In the case when only two disti,nct values can be assigned to the

terminal nodes, it is _;hown that, by choo._.i,ng,appropriately lhei,r probabi.l,i,ty distributi,onp

the numl:_er of terminal nocles examined by the w.-/tprocedure can grow at l,east as

O[(rz,/ln n)d], which, in fact, corr,:spends Io the worst case behavi,or of the algorithm (over

all poss.i,bl.e probability di:,tributiºons).

A formula was then presented in the form of an integral to measure the number of

terminal, nodes e×plorc:d by the w..p procedure when the bottom values are all disti.nct. An

.analy.,;is of the integral show.,., lhal the branching factor of the _,--/_ pruni.ng algorithm i,s

@(n/In n), a result which confiºrm_ a claim by Knuth and Moore [35] that deep cut-offs only

have a second order effect on the behavi,or of the w--/_ pruni,ng al,gori,thm.

www.manaraa.com

128 CHAPTER IV

We think that the main contril)ution of this analysis is to give a better understanctinl_

of the oz--/3prunin8 alsorithm. In particular, we have shown that the a priori unrealistic

a._;sumption that all tile values assiBned to the terminal nodes of a 6ame tree be distinct

corrt:sponds, in fact, to the worst case performance of the all_orithm. Moreover, we have

shown that this worst case performance can be attained even in the very simple case when

the bottom Values can only tal',e on two distinct values, by choosinl_ appropriately their

probability distribution. We think that this can I)e important in practice because, it is

relatively ea.,.;y in most F,amn ptayin8 prot-,,rams to obtain (by inspection of tile evaluation

fLmction) an accurate bound for the ranse of distinct values assii_ned to the various

positions of the I]ame, but it is usually not so easy to derive a 8ood estimate for the

probability (ii'_Jribution of these values.

Simi.lar_y, the t)ran(hint,, factor analyzed in Section 5 provides us only with an.

a_,_ymptotic measure of performance for the c_.._ prunin_ all_orithm (i. e., for trees of larl]e

depth). As indicated by the results of Sf.,ction 3.3, however, the branchini] factor can also

be used as a realistic mea.,.,ure of the worst case even for small trees.

We have measured the efficiency of the _,--_ pruni.n8 all_orithm by the averal]e

number of terminal nodes explored during the search. It would be interestin8 to also

obtain an estimate for the ._tandard deviation of this number.

The scheme we have considered for a,,,,siBninl] values to terminal nodes of a uniform

tree tent itself easily to anaiy.,;i_,.; lit is, however, very simplistic. Different schemes for

assisninl] static values have been proposed in [23], [35] and [45]. Analy.,;es of these

schemes would I>e t_elpfui for various applications_ a step in this direction was presented

in [4.5] for same tree```,of depth 2 and 3.
B .

In the second part of this chapter we have investil]aled the possibilities of

implementin 8 the o¢"I'_prunin6 algorithm in parallel. Due to the intrinsically sequential

character of the algorithm, it .seems difficult to achieve a high efficiency with a parallel

www.manaraa.com

PART 2: PARAI.I.EL AI.PHA--BETA PRUNING ALGORITHM 129

imptementation based on a direct retormutati`on of the ori6inal at6orithm. Rather than

havin6 the processes searcl_ kn parall.el, various subtrees of a same tree for the sotuti.on,

we have proposed, {n Section 6, a paraltet ((mptementat[on {n whi_ch the processes work

{ndepend(_.ntl.y by search{n{,, time entire 6ame tree for the so[uti`on over disjoi.nt

subinterval.-,. The i.dea is similar to the notion of aspiration leuel i.mptemented

(sequenti.atty) in the "fechnoto_,_y Chess Pro6ram [24], [25].

In Sect{on 7, we have (levetoped an anatysi,s of our parat(et i.mptementatlon of the

w../t prtlnin_ al_,orithm, and Theorem 7.4 _stales an optimat sequence of intervals (which

depends on the cleEr(:e k of paraltetism, L. e., the numt)er of processes cooperatin 8 i.n the

search) for minimizing the avera_,e cost of the al6orithm. It fottows, i,n particutar, that,

when the de_re.e of paralle(ism k i,s smart (k = 2 or 3), the parattet alBorkthm show_ an

improvement over the oriEinal aiEorithm by a factor which i.s tarEer than k. A surpri.skn 6

consequence of the r(:sult£, therefore, i'_ that the w../_ pruni`n6 alsor[thm i.s not optimat.

7his fact ha.,; been confLrmed throu[J,h a series of simutations, and for a typi.cat tree (wi.th a

d(:Er(;e of about 3.0, and a depth of about 5) the resutts _how that the w--/R pruni.nl_

at_orithm can be (reproved by 15Z to 25/. It ((._to be noted that these f(£,ures are very

consistent with empirical measurements of the TechnoloEy Chess Pro[ram [25] show{n 6

that the imptementation of the aspirati.on [eve[reduces the search by 23Z.

lhe anaty.,4is we have (l(:ve|oped reties on severat simptifyin[_, a,ssumpt{ons, and {t

woutd I)e interestin 5 to devel.op a more accurate anatysis, for example, by usi.n 5 a c[oser

approximati`on for the cost of a parti`at search, or by evaluati.n 6 the cost of a parti,al search

over ,._ome interval (e, b) 6Even thai the sotuti.on ties {n some i,nterva| (a', b'). The anatysi.s

could at':.o I)e refined by not assumin6 that the processes cooperatinB i.n the search restart

new part[at searcl_es £imu(taneous[y.

Although the paralter i.mplementation we have proposed appears to be effi.cient wi.th

a smart number of pro(esses, the maximum speed-up achkeval)le is limited typi,ca|ty to 5 or

6 (see Fi.£,ure 7.3 wi.th k = oo). We feet that a better way to i.mptement i.n parattet the

www.manaraa.com

1:30 CItAPTER IV

tv--/_ pruning alsorithm with a Large number of processes would be to combine both the

stratesy of (Jecomposition we have propo';ed and lhe independent exploration of different

.,,ubtrees of the entire game tree. For e_ample, we could have two I_roups o_ processes,

each I_roup e×ecutin5 a partial search over a different subinterval, an¢l each process in a

_roup exploring, a ¢lifferent [_ubtree. We thi.nk, however, that the resutts ar_. very

important and should be u,.;ed sy.'Jemat_calty Ln a sequential [mptem_ntatLon, in conjun¢:ti.on

with some dyt_amic: evaluation of the probabili.ty distribution of the value of a 8ame tree.

www.manaraa.com

Chapter V
p

Experimental Results
I

with Asynchronous Multiprocessors

I - Introduction

By siºmutati.n8 a rrluttiprocessor system, Rosenfeld [52] and Rosenfetd and

Dri,s(:o[I. [.53] have reported a series of results to measure tile effecti,veness of

prop, ramming an asynchronous mtJttiºprocessor for the so[utton of the Dir[chtet probtem

us[n 8 chaotic i,terat_ons [11]. "[he probtem con._ists of sotvl.n8 the set of It,near equati.ons

associ,ated with I.aptace's equation through the method of fi.ni.te differences.

In thi,s chapter, we describe a seri.es of experi.ments i.n whi.ch various asynchronous

i,terati,ve method.,_ (_ee Chapter Ill) are implemnnted on an asynchronou.,_ mu[ti,processor

(C.mmp trader the operating sy.,Jem Hydra [63], [.64]) to serve the Di,r[chtet probtem. We

fi.r_t present the results of mea.,;urements obta{ned wi,th these experi,ments. We then show

how very simple techniques from order statistics (see, for exampte,[14]) and from

queuei.n 8 theory (see, for example, [33])(:an be used effecti,vety to exptain and predict

wi,th a fair accuracy the experimental results.

In Secti,on 2, we briefly describe C.mmp and Hydra, and we outti,ne the sol.uti.on of

the Di.r{¢:htet problem. In Secti,on 3, we iºntrodu(:e the various asynchronous i,terati,ve

methods that we have i.mplemP.nted on C.mmp. In Sectiºon 4, we report the results of the

expert,men[s, and, i,n Secti,on 5, we present si,mpl,e ana{yti.cal, techniques to account for

these experimental results. Conc|ud{n 8 remarks are gi,ven i,n the last secti,on.

131

www.manaraa.com

132 Ct4APTER V

2 - Description of. the experiments

In Secti.on 2.1, we only present the main characteristi.cs of C.mmp and of Hydra

which are relevant to our purpose herel a forma[presentation of C.mmp is given in [63]

and of Hydra in [64]. Likewise, a full treatme.nt of the use of the method of finite

differences for solving the Dirichlet problem can be found, for example, [n [22], and we

only briefly describe the method in Section 2.2.

2.1 - The environment

The fottowin 8 description corresponds to a very simplified version of C.mmp under

the operating system Hydra but will be sufficient to provide a reasonable modet for our

experiments.

C.mmp is a muttiproces_._or compos(:d of p processors (p is currently l(i, but, at the

time the experiments were run_ it was_oscittatin 8 between 4 and 9), Pl of those processors

are PDP-.I 1 model 20 and P2 _ P - Pl are PDP--1 [model 40. For purpose of comparison,

we will indicate wi.th the results the numl)er and type of processors used in the
,#

experiments. Those processors are connected to m memory blocks (each with]Mwords)

through an mz×p cross-point switch; nz is currently 16 (it was 13 at the time of the

experiments), but, sin(:e we are not limitr_d t)y the size of the memory in our experiments,

the exact value of m. [s irrelevant here. In addition, each processor is also connected to

its own local memory (4K words). Although the memory available is very large, because of

the .,;malt address field of an instruction (16 bits), only a small fraction (32K words) is

directly addressable hy a process at a given ti.me. The ftydra system, however, provi.des

the user w[th the facility of modifying lhe address registers in order to access the entire

memory.

The Hydra syc_tem also provides the user with a set of macro-instructions for the

maniputation of processes (creation, synchronization, etc.). In addition, the poLLc:y n=odu.le

www.manaraa.com

EXPERIMENTAL RESULTS 133

en,._ures some critic:at function,._ of the ,.,ystem (process scheduling, processor allocation,

etc,); in particular, it ensures that each active process receLves its fair share of processor

time and a processor is allocated to a proce_._ only for some fixed quantum of time: at the

end of a quantum the processor is dealtocated from the process, and the tatter is put back

for re-scheduli.ng into the pool of processes waiting for a processor.

2.2 - The problem

We consider a well-known problem, namely, the so-catted D_richlet problem for

Laplace"s equation (._,oe, for example, [22, Section 20.9]).

The problem is to solve the partial differential equati.on:

t_x._ + _lyy -.-0 (2.1)

in a rectangular domain Dof IR2: D, { (_,y) I 0._ z.,;_,0_;y_;/_ }, when values of u on

the boundary S of D arn specified by the condition.

u .-. -R , (2.2)

for some I]_ven function R defined on S. Many applications require solving this patti.at

differential equation (or very _kmilar one_) [22].

An approximation to the solution of equation (2.1) can be obtained through the

m.ethoci Of fini, fe di.ffere,.ces. A._,,.;umethat w --.(n.,J)h and /_. = (m+l)h, and define a regular

grid on the domain D with mesh size h. This induces the set of points

{ Mi.,j (_i--.ih,:yj"jh) I 0 ._ i _ n+! , 0 < j _; m+l }. Let cL_,j denote lL(Mi,j); the values ¢LO,j,

tLn+l, j, (Li,0 and _Li,nz+l, on the boundary S, are known from equation (2.2). Using, for the

second order derivative (Lx.= at the point (x,:y), the approximation

zxz(o,y) _ [tJt(.r+h,y) + tt(_-'h,y) - 2tL(z.,y)]/h 2

and a similar approximation for _tyy(x.,y.), it can be shown (see, for example,

[22, Section 23.4]) that a solution to the .,;et of to, ear equations:

4u'i,j - _-l,j - _i+l,j " _i,j-I ""u'i,j+l = O, I _ i < n, I < j _ nt , (2.3)

gives an approximation to the solution of equation (2.1) for the points Mi, j within an error

.
/

www.manaraa.com

134 CHAPTERV

of order h3 (a.,_.';umin6bounded l)roperti,es of the fourth order deri,vati,ves of the sotuti.on

_L). A pi.ecew(se it,near approximation f_r the solution u on the domai,n D can then be

deduced from the sotuti.on of system (2.3).

The set of equati,on.,_(2.3) consti.tutes a i,i.nearsystem for whi.ch we are [nvestigati.n8

the solution. Thi.s syt4em can be written, i.nmatri,x form, as:

A _ = a . (2.4)

When :_ i.s tt_e rim-vector corresponding to the row-major orderi,n8 of the grid poi.nts:

_' -- [tZl,l' _n,l' tzl,2' "'" t'_st,m]T

we deduce from thi,s order{np_ the nm_.nm-matr{x A and the rim--vector e of equati.on (2.4),

the tatter bei,n6 known from |he values of the functi.on g p,,i,vi.n8the boundary cond[tiºons.

Di,fferent [terat[ve schemes have been {mplemented on C.mmp to solve thi,s system.

They are descr{bed in the foltowi,n_,,secti,on.

3 - Some implementations of asynchronous iterations

The matrix A of equation (2.4) is a very .,_par_ematrix (at most five elements are not

zero i.n any gi.ven row), and, in this case, [terat[ve methods, although they do not provi,de

us wi.th the exact so[uti,on, are usually advantageous.

The fi.rst two methods we have considered are two basic: i.terati.ve methods' the

point Jacobi. and the Gau_;s-.£ei.deL'smethods. These two methods have been wi.dely

studi,ed and wit[be useful as a basis of comparison. Those and other i.terati,ve methods

that we have implemented are described [n the foltowi.ngsecti.ons. Throughout, we di.scuss

parattet i.mptementations w[th k processes (k =] correspondiºn8 to a sequenti,a[

i.mpiementati,on), anti, for simplicity, we assume that the .,.4ze nn_ of the matriºx A i.s a

multi,pte of k and let q ,, nm/k. In all i.mplementati.ons,we make use of a gtobal vector,

calted X, to contain the curr_;ntvatue of the soluti.on vector.

www.manaraa.com

EXPER|k4ENTAI.RESULTS] 35

3.1 - Jacobi'g method and A_ynchronousJacobi'smethod

SLnce art dia_onat elements of tile matrix A have the same value of 4, the poLnt

Jacobi. matrix i.s readily obtained. Let x(i) denote the i-th i.terate computed by Jacobi.'s

method. We si.mply deduce from equati.on(2.4) that:

x.(i,*l) = (l-./-A) x.(/,)* -/a -- B_(i.) * b.
4 4

The rnatr_x

B = I-.(A
4

i.s the Jc_c.obLm._tri.z a_sociated wi.th our problem. Thi.s matri.x has been extensi.vety

studi.ed, and i.ts ._;pectra[radi.us, which determines the rate of convergence of Jacobi.'s

/.

method, is 8Lven by:

We .,;ee that wi,th Jacobi.'s method art components of _n i.terate are computed

si.miJl.taneou_;ty u._;in6 the values of the. previous i.terate, and that paralteti.sm can,

therefore, be i.ntrodtJcedea.,;ity. A natural parallel i.mptemontation with k processes i.s to

sirnpty decompose the evaluation of an iterate i.nto k .,;ubcomputat{ons, each one

correspondinl_ to the evaluation of a sul),.;et of q , nm/k components, and to have the /¢

proces.,;es carry(n_ out the evaluation of the k sub,.;etsof components i.n parallel. When a

process complete..,.,its ¢iomputati.on,it must then block i.tsetf and wait until the completion

of all. other subcomputations before start{n8 the evaluation of the next iterate. Our

imptementati.on corresponds to this description, i.nwhich process PI always evaluates the

f_r.,.,tq components of the iterate, process P2 the next q components, ... and process Ph the

ta_t q components. After each subcomputati.on all processes synchroni.ze themselves usi.ng

a semaphore, and, after ha_li.n_ updated the components,they all resume thei.r executi.ons
i

for the ovatuati.on of tile next (terate.

The complete ._;ynchronizat_onof all processes at each step of the iteration i.s an

evident drawback _n the parallel implementation of Jacob_'smethod, and we can anti.cLpate

that this wLtt result in a substantial overhead. The As:ynchrono_LsJacob_'s method (or AJ

www.manaraa.com

! 36 Ct4APTER V

method) i.s a variati.on of Jacobi's method in whi.ch a process never waits for the other

processes to comptete thei.r computation.,.. As soon as a process completes the eva|uation

of its subset of components, it reteases the new values for the other processes by

updating tile corr_;sponding components of the gt0baL vector X, and, i.mmediatety after, the

process starls re--evaluating its subset, using in the computati.on, the values of the

'components as they are known at the beRinning of the re-eva[uati.on. The A.I method has

been implemented using a critica[section for updating the components of the global vector

X at the.end of an evaluation, and for copying the components of X requi.red for the next

evaluation.

It can be seen easity that, if a process i.s never suspended i.ndefi,ni.tety, the AJ

method can be expressed as an asynchronous iterati.ve method re[ati.ve to the [i,near

operator corresponding to the Jacob[matrix B. Since B is a non-negative matrix wi.th a

spectrat radi.us tess than unity, i.t i.s a contracting matrix, and the convergence of the AJ

method for our probtem is a direct consequence of the results of Chapter Ill.

3.2 - Gatm_-Seidel's mnthod and A_ynchronous Gaur,_-Seidel's method

Gauss-Seidet's metllod differs from Jacobi's method in that the components of an

iterate are evaluated in sequence and the value of _r(i.) i.s used i.n the computati.on of _s(i)

when s > r (that is, as soon as it is avaitabte). Let L and U be the strictty tower and upper

triangutar matrices defi,ned from:

B : I - LA .-. L . U.
4

The sequence of iterates, for Gauss-Seidet's method, satisfi,es:

_(i.+l) = L x.(i*l) * U _(i.) + b,

lhe matrix
o

£, .-- (I.. I.) -1 U

defi,nes _.(i*I) directly as a function of z.(i.). Its spectral radius determines the rate of

convergence of Gau,.;s--Seidet's method and is given by:

p(£) = [p(B)] 2 , (3.2)

www.manaraa.com

EXPERIMLNTAL RESULTS 137

where f,(B) i.s the spectral radius of the Jacobi matrix and [s gi.ven by equati.on (3.1).

We notice that Gauss-Seeder's method is intrinsic:ally sequential, and that'paralteti.sm

cannot be easily introdu(:ed. The method has been implemented sequentia|ty (t. e., wi.th 1

process) as a parti.cutar (:ase of tile Asynchrot_olLt Ca(tss-Se_deL's method. '

The A_Zynchrono_L_ C(_ss-.SeideL's method (or ACS method) i.s s_mitar to the A.I method

except that a proce._,_._, evaluates the components in its subset sequentially and uses the

new value of a component within the s(zme subset as soon as it becomes avaitabl.e. In thi.s

respect, the AG$ method resembles Gau._s-Seidel's method for the computati.on wi.thi.n a

sub.,_et of components, and, i.n particular, when the AGS is implemented wi.th only one

process, Lt simply reduces to Gauss-Sei.del's method.

As i.n the ca._e of the A.I method, the AGS method can be shown to correspond to an

asynchronou_ _terative method relative to the Jacobi. matri.x B, and, i.n th_s case too, the

convergence of the AGS method follows from the results of Chapter III si.nce the matrix B
e

(En the parti.cular (:a,_e of our problem) i.s a contracting matrix.

3.3 - Purrdy A_ynchronou_ iterative method

The DtLrel:y As:ynchronolLs method (or PA method) i.s the s'tmplest me.thod we have

implemented. It ba._{cally reseml){es the AGS method, but it uses no critical section for

retea.,;ing the vatues of the components in its subset of for copying the values of the

components requi.red in the computations. Rather, a process fetches directly from the

gtobaL vector X the values of the components as they are needed and retea._es new values

of the components one 6:), on.e, immedi.atel:y after the eue.lu.ntion of each componetzt. Again,

tl_e PA method can t)e ea._ity expres.,;ed as an asynchronous iteration retati.ve to the |tnear

operator (:orrespondinE,, to the contracting matrix B, and the convergence of the PA method,

for our problem, foltow_ directly from the resutts of Chapter]11.

In additi.on to being the simplest method to implement from a programmi.ng point of

www.manaraa.com

! 38 CttAPTER V

view, the PA method is also, spacewi._,o, the most effi.cient method ,._ince no extra variable

is required to copy the val,ues of an i.tc,rate as of the begi.nni.n8 of an ovaluati.on or to

contain the new values of the components before being rel[ea_ed. The main advantage of
/

the PA method, howe.vet, is the total[absence of any form of synchroni.zati.on, whLch,

therefore, makes it very attracti.ve for i.m tementati.on on an asynchronous mul[tiprocessor.

An apparent di_advantaF, e of the PA method is that al,t processes frequently access

the common F,tobat w:ctor X, therefore possibly causin8 memory conflicts. Thi.s is not so

for the parli.cular problem we arm considerinF, in case of a large system of equations ([. e._

for large tt and m). 1,3ecau.,;eof the spar,.;ity and the speci.al[form of the matrix associ,ated

with our .,;y._tem, accesses to the vector X by a F_,i.venprocess wilt be mostly confined to"

acces.'_es of components within its own subset and only a few accesses to components i,n

the two adjacent subsets. Moreover, thi.s is the 8eneral[case for the solution of linear

_;ysterns resultin8 from the application of the method of finite differences to partita[

differential, equati.ons. Therefore, this apparent problem can be solved easily si.mpty by

attocatinl_ different memory banks to differents subsets of components of the 8tobal vector

X.

Another problem with the PA method is specific to C.rnmp (and Crn_) and is'due to

the ab,._ence of uninterruptibl,e doubl[e word instructions on the PDP*.I I (or the L$I-I 1). In

parti.cular, since a fioati.n_ point numl)er is implemented on two consecuti.ve 16 bit words,

.,;[multaneou_; up(tatinF, anci roadin8 of the same component by two processes rnisht result

in a test of precision of the last 16 bits of the mantissa. Atthoul]h this problem is very

untikety to occur, it is real,, and the preci.si.on achievable on the sol[uti.on vector has to be

chosen accordingly.

3.4 - Other post_ible implementation_

The method.,., we have i.ntroduced are intended to be an ittustrati.on of the issues

raised by the i.mpllernentati.on of paral.tel[atEorithms on an asynchronous multi.processor,

www.manaraa.com

EXPERIMENTAL RESULTS ! 3 9

and they are not necessarity the most effi.c[ent way to serve a it.near sy._4em of equati.on$

by iteration. In this section, we menti.on .neverat techniques which shoutd be used [n the

practi,cal i,mplementat[on of asynchronous iterative methods.

3.4.1 - Asynchronous iterations with relaxation

The [ntrocluction of a retaxat_on factor its a wet[known techni.que for [mprovi.n 8 the

performance of iterati.ve methods, and, atthough we do not report here any resutts

concern[[nt_ iterati.ve methods usi,ng re[axati,on, we have run some experi,ments whi,ch show

that the i.ntroducti.on of a retaxati,on factor i.s a very promiising way to acceterate

asynchronou.,; [terati,ve methods.

Let F he an operator, and let c,_be a posi,ti,ve scalar. An i,teration retati.ve to F wi.th

the retaxati,on factor (,) defi,nes the sequence of i.terates throush:

x.(i+l) -- (,_F x.(i) • (1-c))x.(i).

In parti.cular_ when c,__- 1, th[[._ corresponds d[rectl.y to the i,terati.on retati.ve to F. ThLs

techn[[qtte i,.,4 very useful, in 6enera[, since the relaxation factor o can be chosen to

maximize th# effi.ci,ency of the [terati,on.

As parti.cu|ar cases, let us examine the methods we have i.mptemented. The Jczcobi
o

Ouer-.Rela.x.c_ti.on m.ethod (or JOR method) produces the sequence of iterates deft.ned by'

x.(i+l) --- _,_[(I-.l-A)x.(i) + 1_] + (l-_,Ox.(i.),
4 4

and, therefore, corr,;spends to .lacobi.'s method w_th the Jacobi, matr[[x:

I (,) A ,: cab + (l -c,_) IBo =
It foll.ows that, i.n our case,

=,II-c,,I + ,,,p(13),

therefore, c,)_-I mini,mizesp(f3c,)),whi,chmeans that Jacob['smethod cannot be improved

usi.ngretaxation.

The Sueces._h/e Over-.Rn_x.atiortmet/led (or SOR m.etkod) is deri,ved from

Gauss-Sei.det's method. The SOR method (h;fi.nes the sequence of i.terates:

www.manaraa.com

140 CHAPTER V

_(i+1) --- _) [L _.(i+1) + U _(i.) + b] + (1-(o)x.(i),

and i.[can be shown (see, for example, [62, p. 203]) that the spectra[[radi.us of the SOR

matrix

[_ - (I "- (,)L.)-I[(I-_)I + _U]

is mini.mized when:

2
(._) --.

Si.mi[[arty we can define ttle A.IOR, ASOR and PAOR methocls from the A.Ij AGS and PA

methods, respect[ve[[y. A[[[three method_; arc, easily shown to correspond to asynchronous

iterat[ve methods rel.ative to the [[[near operator associated wi, th the matrix B(.,). In

particular, since

prov[decI that:

0 < co < 2 (3.3)
I + F,(B) '

the matrix B(.o is a contractinF, matrix, and we are guaranteed of the convergence of art

three methods |n the parti.cular case of our probl.em. Nothing, however, is known in

genera[a.,; to the best c), and further resutts in this direction wou[[d certain[[y be of

i.nterest. Note tha! con(litton (3.3) on[[y represents a suffi.dent condi.t[on for converF, ence,

and that the method.,_ can sti.tt converge outside of this ran8e.

3.4.2 - Adaptative asynchronous iteration_

At[[of the i.mptemnntation.n that we have proposed are based on a st(ztic

deeompositi.on of the con',putation involved i.n the evaluation of an i.terate, and, in at[[(:a.,;es,

each process is as;si.gned to the evaluation of a fi.xed subset of components. With .lacobi.'s

method, this resutts in a substantial overhead since art processes have to wait for each

other at the end of each step of the iteration. A possibi[[i.ty for reducing this overhead is

to decompose the components of an iterate into more subsets than processes, and to tet

the processes adjust their own speeds by, evaluating more or fewer subsets of

www.manaraa.com

EXPERIMENTAl.. RESULTS 141

components. For example, the parallel, i,mptementation of Jacobi.'s method with 2 processes

whi.ch seems the best suited for execution on an asynchronous mul,ti,processor i.s to have

one process update the components start_nl_ wi,th the fi.rst one and to have the second

process update the components starli.ng, w[th the last one; an i.terat[on step terminates

when the two proce.(;ses meet (not necessarily exactly i,n the mi,ddl,e). Wi.th thi.s

i.mpl,ementati,on, the difference in executi,on ti.mes between the two processes Ls ti.mi,ted at

most to the time to evaluate only one component, which obvi.ousty reduces si.BnLfi.cantty

the waiting ti.me.

Another way I,o take into account the different speeds of the processes _voul,d be to

subdivide the components _nto .,+ul)sets of different sizes, and assi,I]n the computati,on of a

I.ar[_,er subset of components to a faster process. The speed of a process, hc;weverj

depend_ maLnl.y on the speed of the processor on whi.ch the system dec:i.des to execute the

process, an(:l thi,s i.s usualty not known a priori.

There i,s another a(Ivanta_e of not pre-assi8nin8 to a process the evatuati.on of a

fi.xed sub.,;et of components si,nce, at each step of the i,terati,on thi,s allows for some

ftexLbi,ti.ty Ln the sel,ecti.on of the sub_+et to be evaluated next. Many criteria can be used

for thi,s selection, i.n particular:

(1) L.RLJ: the sub_._c,,tselected i,s the one which has been the Least Recently

Updated amort_ those riot currently upclated,

(2) GRE: the E_ul)set sel.ected i,s the one whi,¢h c:arries the Greatest Relative Error

(al,so amon{_ tho:;e whi.ch are not currentl,y updated).

]+he GRE selection, for instance, should increase the effi.ctency of an i.terati,ve method by

re¢luci.nF, the numl)er of i,teration.'; required to achieve some gi.ven admtssibl.e error. The

selection of a new subset at each step of the i.terati.on mtBht, however, i.ntroduce

additional, overhead and, in parti.cutar, wilt almost necessarily requi.re the use of a criti.cat

se(:t[on. We do not thi,nk that this should be used_ therefore, i.n conjunction wi.th the PA

method.

www.manaraa.com

142 CHAPTER V

3.5 - Organization of the program

Before presenting the result'., we give a brief description of the programs. All of

tile different method.'; have been impiementect in BLISS-It [15] and all progrm_s have

basic:ally the same fallowing structure.

Ma._;ter proc:es._;: Computational process i:

Initialization: read in n, m, t, k; r P(n.tutex);

fo_r i ,.- 1, ..., k c_l_oo [Reacl all necessary components of X_Create and start process i; V(mutex);
fo__ri :-- 1, ..., k fie r_epeat

P(compl_tion); Evaluate all components of subset i;
Output the statistics about the runl r P(mlstex);

/ Update all components in subset L;
, Read all necessary components of Xl

V(mutex);
until I_;Iobal error < t;
V(compietion)_

The method implemented by this program is embedded in the instruction "Evaluate
0

all components of .,;ubset i." From the program each process can be thought of as a

succession of identical c:yc_s_ each cycle being composed of an eu_l=tcztiott section followed

by a criti.cal section.

The programs for .lacobi's method and for the PA method are slightly different but

follow basically the ._;ame structure.

4 - The results of the experiments

We report, in this section, the measurements obtained by running on.C.mmp the

various iterative methods that we have introcluced in Section 3. We discuss, in

Section 4,1, the different parameters of the pro[,,ram and the dec:isions leading to. their

choi¢:es. In Section 4.2, we present the local behavior of the processes within each cycle,

and, in Section 4.3, we present the global resul.ts and (:ompare the different methods.

www.manaraa.com

EXPERIMFNTAL RESULTS ! 43

4.1 - Choice of the parnmoter9

All of the experiments have been run under the same conditions, and, before

presenting the results of the measurements, we briefly discuss below the choices we have

made for the variousparameters of our problem.

'4.1.1 - Size of the system

We want to choose the size of the system to be solved (i. e., to choose n and oz)

large enough so thal the problem be realistic, but, on the other hand, since we do not

want to deal here with problems of memory addressing, we have limited ourselves to a

size that permit_ all of the data to be directly addressabie. The m_in restriction, in this

case, comes from the fact that the size of the data local to a computational process has to

fit into the stack of local variahles (contained in paBe 0), i. e., in about 3K words. With

the A.I method, for instance, each process has to have the values of the components it is

updating and a copy of the values of the components used in the evaluation, as of the

starting time of the compulation. There may be up to 2nmelements each of which fits into

two words of memory. Therefore nn= has to be thosen below 700. The number504 has

been chosen (mainly because it is divisible by 1, 2, 3, 4, 6, 7, 8, 9 ... and almost by 5 too!),

and tz and m. have been chosen to be 21 and 24, respectively, [n the series of experiments

reported here.

4.!.2 - Error of the solution vector

An experiment is stopped when some norm of the error vector is smatter, in

magni.tude, than a given admissible error _. (]he norm we have chosen is I1.11o,,the

maximum over all components.) Since we want to be able to compare the experimental

results wi, th the results of a theoretical analysis, we want to choose _ small enough so that

asymptotic rates of convergence can be estimated through experimental results. For our

ptlr'poses, the asymplot_(rate of convergence for a method 7/? (:an be defined as:

6) .-, tim -lo___ll_,:ll (4.1)
_--*o.', t_l: '

www.manaraa.com

1411 Ct4APTER V

where t i is the error vector after the i-th stlb-i.terati.on (a su,b-iteration corresponds to an

evaluation by one process so tha! k sub-iterations are (,.arried out s[rnuttaneousty i.n a

parall.et i.mptementati.on wi.ttl k processes), and where rti is the mean number of" ti,mes each

component has been evaluated up to the i-th sub--iteration. For all the i.mpiementati.ons
J

we have consi.clered the components are divided i.nto k equal subsets, and nt; i,s St,reply

6i.ven by rt/ .-, i/k. (The norm in equati,on (4.1) is tile same norm as the one used i,n the

termination criterion.) Ibis clef[nit[on of at_ymptotic rate of convergence corresponds to

tile classi.cal defi.ni,tEon and, in parlEcular, we have)_(.lacob[) ,,. -log p(B).

The i.nterpretation of the rate of convergence i,s that 1/1_(271) is an asymptoti.c

measure of the average number of ti.mes each component has to be updated i.n order to

decrease the norm of the error vector by a factor of 10 (if the lob of equati,on (4.1) is base

10). In particular, when z tends to 0, the average number of iterati.ons (per component)

requi,red to solve the system with an error less than t grows it,nearly ti,ke -tog(t)/,l_(77"l).

]n Fip, ure 4.1 we have plotted the number, N(,_), of i.terations requi.red to solve our system

(tz = 2/, nz = 24) within an error z, versus -legit) for both the A.I and the AGS methods

when // .--I and 3 processes are used. This shows clearly that the asymptoti.c rate of

convergence is reached very fast since, when -legit) > 0.25 (L e., t < 0.5fi)_ N&) varies

linearly w(th -tog(t).

When k = ! the A,I and AGS methods reduce to Jacobi's and Gauss-Seidet's methods,

respecti.vety, and the slopes obtained from Fil_ure 4.J can be compared to the theoretical

values [-top, f,(_J)]"J and [-[o_ pC,E,,)!"'l, respectively, where:

- 2.1-(c:os . cos) ~ o..o9o97
p(,£) = [p(B)] 2 ,,, 0.98202.

In "rabte 4.1, we report the obt_erved and theoretical number of t.teratt.ons required to

asymptoti.calty ctiv_de the norm of the error vector by a factor of 10.

www.manaraa.com

EXPERIMENTAL RESULTS 145

AJ (k = 3)
4so _ AJ (k_ l)

400 , _/_350

300

250200 /// _ AGS (k=3)

// AGS (k =, t)

// .z_<-_.. ;/f

I so /;_//

,oo J -<:::J"
' i I*'JI '_'_' I'411"

J i" i "_so , .._S¢:;

0 l I ----t--_4 I I I I I I I I ; I ;-
0 0.2.5 0.5 0.75 1 1.25 1.5 1.7_i

- lo_,(e.)

Figure 4.1 - Number of {teralions required with the A.I and AGS methods ,

AJ AGS

k.- J k,=-3 k= I k=3

Ob.,;erved; 254 257 J27 J43

Theoretical: 254.7.0 - 127.89 -

Table 4.1 - Comparison of the rates of convergence for the A.I and AGS methods

In all the experiments reported below, the termination criterion uses _ :: O.J for the

value of the admissible error. This value (:orresponds to a reasonable execution time, in

the order of 3 rain., and altows tlS to base our measurements on more experiments.

www.manaraa.com

146 CHAPTER V

. 4.1.3 - Other paramolers

Since we are. mainly interested in comparin8 the different methods wi.th respect to

their rates of convc:,rgenc;e toward the .,;otuti.on vectort we simply set the displacement

vector 6 to be 0 so that the solution is known to be _' = O. As the system we are studying

Ls linear, we do not loose any F,enerati,ty, but this wilt result i,n a simpler test for the

termination c:riterion _;ince, in this case, the curr_:nt i,terate [s exactly the error vector.

La_.;tly, in all the exp(:riments, the initi.al, approxi.mation has been chosen as the vector wi,th

all. components equa| to 1.

4.2 - Local behavior of the program

We present, in th_s _;ect_on, the local behavi,or of the computati,ona! processes by

looking at the ti.me they _,pend (lurin 8 each cyde in the eva[uatton secti,on and (except

wLth the PA method) in the (riticat secti,on of the program. In SectLon 4.2.1_ we present

the results of the measurements, and, i,n Section 4.2.2, we gi.ve an interpretat{on.

4.2.1 - Results of the measurements
/

The results presented in th_s section have been derived from the i,nformat_on given

by the tracer Davi.d Lamb i.mplementecl on C.mmp. (Among many other things, each P and V

operati.on is reported by the tracer atonF, wi.th the t_me _nstant when It was executed, the

process executinl_ tt}e operation and the processor carryi.ng out the executi.on.) Since the

code of the programs for the diflerent methods are i.denti,cat (with respect to these

rnea._;uremnnts) we limited our,.;elves to take measurements on the AJ mettled. Four

experiments have been run with k- 1, 3, 6, and 12 processes. In all of them p = 7

processors were available: 5 PDP-I1/20 and 2 PDP-II/40. The histograms for the

distribution of the time spent in the evaluation section as well as the distri.buti.on of the

ti,me spent in the critical secti,on, for eac:h of the experiments, are plotted in Figures 4.2

through 4.9. (In the (a.,_e of the c:riti(:at section, the results presented i,n these figures also

include, when k > 1, the possible waitin 8 time before entering the critic:at section.)

l ,

www.manaraa.com

EXPERIMFNTAL RESULTS 147

Frequency 7,

40

30

20

[0

II
Ii j

0 300 600 900 1200 1500 1800

Ti.me (ms.)

Figure 4.2 -- Time spent i.n the evaluation sectLon (k ,- I)

Frequency X
,

50

40
I

30

i

2O

I

o ; , l _,, = : II _,,,lIr,
0 10 20 30 40 50 60 70

Time (ms.)

Figure 4.3 - Time spent in the critica[section (k = 1)

www.manaraa.com

i

148 CHAPTER V

Frequency 7_

2 o

15

1o

" IIllll
0 "I I l.. • I _ , .

0 150 300 450 ' 600 750 900
t

T_me (ms.)'

FLgure 4.4 - Time spent [n the evaluati, on section (k = 3)

Frequency _

20]
I

15

10

L"l5 .

1

0 10 20 30 40 50 BO

Time (ms.)

Fi.gure 4.5 - Time spent i.n the crLtlca[section (h = 3)

www.manaraa.com

EXPERIMENTAL RESUL'iS 149

Frequency X

I0

B l

G, II _ll I1
2 1̧¸ 'lil,',_

I 'll._!r [• r

0 I I , ,I" I I I I
0 100 200 300 400 500 600

p

Time (ms.)

• Figure 4.6 - Time spent in the eva|uation section (k = 6)

Frequency 7_

FI2 I
|

I
10 I

I
8

6 'l
4 [11 .

2. 1II 1
0 I '' I I ; I _-

0 lO 20 30 40 50 60
.,

Time (ms.)

Fip,ure 4.7 - Time spent i.n the crtti.cal section (k - 6)

www.manaraa.com

150 CHAPTER V

Frequency X

8

1

6

I,
.]4 •

2

0 I l ' I I t t
0 ,50 100 150 200 250 300

Time (ms.)

FtF_,ure 4.8 - Time spent in the evaluation section (k -- 12)

Frequency 7.

I []
4 11 1]

1 f

II I,,
_ p

II I,

o "_.., ,,,i'I 1I f"'ll
0 50 100 150 200 250 300

Ti.me (ms.)

Fi.F,ure 4.9 - Ti,me spent iin the cri.ti.('a| section (k = 12)

www.manaraa.com

EXPERIMI'NI'AL RESULTS 151

These figures show clearly that two different types of processors are used. When

k = 3, for example, the distributions have two main peaks (at about 18 ms. and 28 ms. Ln

Fil_ure 4.5), and, in particular, we can derive from our results an estimate for the relative

speed.,., of the PDP--II/20 and the PDP--I]/40. The ratio of the speeds is certai.nty

probtem dependent but, in our case, I second on a PDP-II/40 corresponds to about

1.4seconcls on a PDP-.II/20, i.e., the use of a PDP-|I/40 instead of a PDP-|I/20

corresponds to a gain of about 30'/, in running time. If we took more closely, we can see

that each main peak is composed of several .,iubpeaks corresponding to each processor;

two different processors, even of the same type, actually have different speeds. Thi.s i.s

parlicularty evident in FiEures 4.2 and 4.3, where the two main peaks correspond to the

executions on ea¢:h of the 2 PDP-! |/40. Since it is the policy of Hydra to allocate first

the PDP-.I 1/40, the third peak in Figure 4.2 does not correspond to to an execution on a

PDP-.!|/20 but, in fact, corresponds to executions on a PDP-ll/40 which include some

overhead due to the re--scheduLing of a process at the end of a quantum.

4.2.2 - 'An interpretation of the results

The main statistics about the distributions presented in the figures of Section 4.2.1

are collected in Table 4.2 (a) and (c) for the evaluation section and the c:ritical, section

(inctudin[,, the possible waiting time), respe¢.tivety. In addition, Table 4.2 (b) contains the

same statistics concerning the critic:at section by itself, excluding any waiting time. (AlL

ti.mings in the table are expressed in ms.)

In Fit_ures 4.]0,4.1] and 4.12, we have plotted the variations of the averal_e

executi.on times for the two section._; of the program as they can I)e found in

Table 4.2 (a), (b) and (c), respectively. The results of Figure 4.1! represent strictly the

execution time of the critical section, white the timi.ngs presented in Fi.Bure 4.12 also

contain the possible waiting time before entering the critical section.

www.manaraa.com

152 CHAPTER V

k- I k =3 k =6 k = 12

Minimum 1 123.85 348.30 239.36 IOO.O7
Maximum 1889.60 1524.13 834.97 502.02

Ave r age 1292.72 534.35 423.04 187.86
Standard dev. 136.51 118.88 84.23 47.10
Coeff. of var. 0.106 0.222 O.199 O.251

(a) Evaluation section

•" '," " " i,', •

k ,- I k = 3 k = 6 . k :_-:,....1:2:._:*.... ,..

Mi.nimum 43.49 16.82 13.59 7.44
Mm(imum 174.82 186.02 170.96 21.91
Average 47.75 23.96 21.65 l 1.57
Standard dev. 13.91 11.71 7.67 2.77
Coeff. of var. 0.291 0.488 0.354 0.240

(b) CritLcat section (w_thout the bl.ockin8)

k .-- I k =--3 k ,,-6 k = 12

Minimum 43.49 16.82 13.59 7.44
Maximum 174.82 199.64 196.97 431.65
Average 47.75 25.63 27.81 177.04
Standard dev. 13.91 13.90 17.67 48.35
Coeff. of vat. 0.291 0.542 0.635 0.273

(c) Critical section (Lnctudi.ng the bl.ock[ng)

Tal)te 4.2 - Statistics about the two secti.ons of the program

Time (ms.)

12oo

1000

8OO

600

400 " _......".............

200•

0 I -}-------t- t I I :1 I .t I I - I
0 1 2 3 4 5 6 ? 8 9 10 11 12

Number of processes

Figure 4.10 - Mean time spent in the evaluation section

www.manaraa.com

EXPERIMENTAL RESULTS 153

Time (ms.)

,50

,o \\

3o "_'x,,,
................. tt20

-I

[0

0 -- t t-------I tt t I I t I I ;-
0 1 2 3 4 ,5 6 7 8 9 10 11 12

Number of processes

FLBure 4.1 ! - Mean time spent Ln the critical secti.on (waitLn 8 ti.me excluded)

Time (m_.)

o,o- /J150

I00 ' " /"_

50' , /

0 1 2 3 4 5 6 7 B 9 10 II 12

. Number of processes

Figure 4.12 - l_ean time spent in the critical section (waitin8 time included)

We note that, while a process does not suffer a very important delay (before the

critical se¢:tLon) in the parallel implementation with k =3 and 6 processes, Figure 4.12

show.,., a very sharp increase in the waitinl] time for k = 12. In fact, further results

obtained by tracLnl] the execution of the prosram showed that, in the parallel

Lmplementati.on wi.th 12 processes, the queue to the critical section contained almost

www.manaraa.com

]54 CHAPTER V

al.ways 6 or more processes (not counting the process executing the critkcat secti.on). This

means that there has almost aiway._ been at least one processor idle among the 7

processors available. The fact that the processes are never competing for a processor

can, therefore, explain tile steady decrea.,;e of the executi.on times presented in
/

Figures 4.10 and 4.1]. In both cases a first approximation can be obtained in the form

! 5, for some appropriate constants e and b. However, since i.t wilt be useful in
(3L + _.

Secti.on 5, we develop below a closer approximation which takes into account the po[i.cy of

Hydra to all,ocate first a PDP-] 1/40 (i.. e., a faster processor).

Let Pl and P2 be ttle number of PI)P--ll/20 and PDP-II/40 avail.able, respectively.;, .' ,

and let p ,, Pl . P2" We denote by p the relative speeds of the two types of processors|

experimental evidence, from the results of Secti.on 4.2.l, showed that p ~ 1.4 corresponds

to a reas_onab[e estimate [n the particular case of our problem. Consider a program which

requires an averaF, e time x. when i.t [s executed on a PDP--] |/40, and let _k be the average

execut[on time of the same program when it is executed in an environment wi.th k

processes (each process _s assumed to recei.ve its fair share of computing power). First[y_

when k s; P2, a PDP--I]/40 is allocated to the process, and its actual, executi.on time isl

therefore, s_mpty given by:

x.k - _. if k._ P2" , (4,2)

Next, assume that P2 < k _;p ,, Pl + P2' In this case, the process is allocated a PDP-J [/40

the fraction _ of the time, and it is allocated a PDP-I 1/20 the fraction k--_-2"- of the time.

I k-P2 __- lhis means that I unit of actt|at execution time contributes to _ T + uni.ts of

(PDP-t'I/40) time toward the total time x.. We then have:

n.k
= _. 'If P2 < k _;p .-,Pl + P2" (4.3)

_'k k - P2 + P'P2

La.,;tiy, if k > p .: Pl + P2, let us a._sumP., as it is evidenced [n the experiments, that the

processes are not in competition for a processor (i. e., at l,east k-p processes are always

waitinl] for enterin 8 the critic:aL s;ect[on). With the same argument as above, we fi.nd, [n

this case, that:

p.p
_k "" _. {f k > p = PJ + P2" (4.4)

PJ + P'P2

www.manaraa.com

EXPERIMENTAL RESULTS 155

This show.,., that, in each of the three cases, the average executi.on time _'k can be

expressed as:

where the factor Pk [s deduced from equations (4.2), (4.3) and (4.4).

We can now find an approximation in the form (eL. b hl-) Pk for the averase execution

times of the evaluation section and of the critical section in the impl.ementation with k

processes (denoted by _'k and ok, respectively). We determine the values (_ and b using a

least square approximation to the values in Table 4,2 (a) and (b). We find that:

= (82.89 + 1207.73 J)Pk, (4.5)

= (7.,072 . 3,0.901 _) Pk" (4.6)C1¢

Using Pl - 5 and P2 '-"5 (and p = 1.4) in the evaluation of the factor Pk, we find that, for

k- l, 3, 6 and 12, the values obtained from equations (4.5) and (4.6) are consistently

w[thin 15'7. of the experimenta| results. In addition, these two equations provide us with

some estimates for z:k and c k which are a useful complement to the values of Table 4.2, for

other values of k.

4.3 - Global results
,/

In this section, we report the global measurements Of the parallel implementations

with k processes for the iterative methods that we have presented in Section 3. Jacobi's,

the A.I and the AGS methods have been implemented on C.mmp with a configuration of

p --: 6 processors (4 PDP--I 1/20 and 2 P[)P--I 1/40), and at[the experiments have been run

wittl k = 1, 2, 3, 4. 6, 7, 8, 9, 12 and 14 processes. The PA method has only been

implemented later, by Raskin [48], on Cm_ [59] (along with the first three methods), and

the results we present below for this method are the results of his measurements. A

comparison between the results of C.mmp and of Cm_ for the three other methods showed

a comp|ete agreement, and we have normalized the timings of the PA method so that it

coincides with those of the AGS method for the lmptementati.on with ! process (since, in

www.manaraa.com

] 56 Ct4APTER V

thi.s case, both methods re(hJce to Gau*.,_;-Sei.del.'s method). The ¢:onfi.guration of Cm*

i.ncl.uded 8 processors (LSI-I]) at the ti.mf_ of the experiments, and the PA method has been

i,mp[emented wi,th k = 1, 2, .9, 4, (i, 7 and 8 processes. (The results correspondi.n8 to 7 and

8 processes cannot be compared with the results obtained on C.mmp, and they are

i,ndicated with dashed tines i,n all. the fi.I]ures.)

In FLf]ure 4.13, we present the total runn[n[,, t_mes for the various methods as a

functi.on ofthe number of processes used i.n the parallel i,mplementati,on.

Time (sec.)

400

350

30O

25O

-" Jacobl

200"

iiiiiill*".....".......
" '_ --,. AJ

150
"D

AG$100 ._ _............. •............•
................ --t

50
" • PA

0 I -t---. i I t I t t. : = = = ' _ _ =
0 t 2 3 4 5 6 7 8 9 t0 11 12 t3 14 15

Number of processes

Fi.i]ure 4.]3 - Total exP_(:ution ti,mes with Jacobi,'s, the A,I, the AGE; and the PA methods

Thi,s di.rect comparison is ,.;omewhat "unfair" vi.s _ vis Jacobi,'s and the AJ methods

si,nce we know that, for the particular problem we are consi,deri,n8,, Gauss-Sei.del.'s method

i.s already twice as fa*.;t as Jacobi.'s method. In Fiºsure 4.14, we have reported the retati,ve

www.manaraa.com

' EXPERIMEN'I'AL RESULTS 157

variation of the runnin8 time (i,. e., tilt k where t k [s the running ti,me when k processes

are used). "[hi.s i.s atso a measure of the ,,;peed-up achi.eved i.n u£i,ng k processes.

Speed-up rati,o

6

PA

5

4

J "_ "Q O_,.

f/" t,-,,.,

3 ,.f"f"'J .,,Ig... " ".............. .

/ 2' ..-f _ "" "..........
/ ./,,../ _.- -....... , ".......................... -'---1 A.I

/ //" .,,. '" AGS'

2 _'.............. - Jacobi,

t

0F-----I.....I....l.........I- I_'' I I I II_ I I ! F

0 1 2 3 4 5 6 1 8 9 l0 II 12 13 14 15

Number of processes

Fi,sure 4.14 - Retat[ve improvements with Jacobi,'£, the A,I, the AGS and the PA methods

Fi.gure 4.14 ,.;how.,..clearly the effect.,., of using the different forms of synchroni.zati,on

i,n a parattet atg,orithm. Due to the futt synchronizati.on of art processes at each step of

the i.teration, Jacobi's method exhibi.ts the worst behavi.or of art four method,.;, whi.te the

PA method, whi.ch uses no synchronization at air, achieves an almost opti,mat speed-up.

AtthouBh the A.I and AGS m_thods are very .si.mil.ar i.n nature, Fi.Bure 4.14 shows that

the speed-up ratios achieved by the two methods differ substant[atty. Thi.s difference i.s

mai.nty due to the fact that the tota[number of [terati.ons i.ncreases onty sti.ghtty wi.th the

number of processes for the AJ method, white the i.ncrease i.s more i,mportant for the AGS

www.manaraa.com

! 58 C)4APTER V

method. Thi.s i.s iJtustrated in Fi.sure 4.]5 where we have plotted the number) N(k), of

[[erati.ons required to solve our system ur_in8 k processes as a functi.on of k.

0

N(k.)

350 o................. A,!

.ire • - _,. *
st

"_' " " " " " " " " " Jacobi300

z5o• AGS

o.-- IF........
.4l

200 -"

.f • - ,- • PA
150

. .
0 I 2 3 4 5 6 7 8 9 I0 ii 12 13 14 15

Number of processes: k

F(guro 4.15 - Number of i.terations required to serve the system

Fi.sure 4.15 .,;hews that for the A,I, AGS and PA methods N(k.) increases regularly

(ancl almost it.nearly) with k. This difference wi.th respect to the sequenti.at method

(..lacobi.'s or Gaus_;-Se_clet's method) Ls one of the factors that determine the total runni.ng

ti.me of the various method,.;, but, obv_ou._;ty, the presence (or absence) of synchronizati.on

is another i.mportant factor. When the number of processes increases) a c.r_ticat secti.on)

for i.nstance, acts as a bottleneck, which tends to decrease the parallelism and increase the

total execution time. In the next secti,on, we proceed to the evaluation of thi.s factor.

5 - On the analysis of algorithmsfor asynchronousmultiprocessors ,.

We want to i.tlustrate i.n this secti.on that the anaiys[s of parallel albert.thins for

asynchronous multiprocessors can benefi, t from techni.ques developed i.n the framework of

other i_enerat theories. We show that some simple results of order stati.sti.cs (see, for

www.manaraa.com

EXPERIMtN'fAL RESULTS /59

example, [I.Zl]) and of queueinl_ theory (see, for example, [33]) can be used effectivety in

the analysis of atgori.thmt_ for muttiproce_._ors.

As examples of multiiprocessor.,., algoriithms, we use in this secti.on some of the

asynchronou,.; iteratwe methods described in Section 3. We use the parallel

implementation of Jacobii's method (Section 3.1) as a typical example of a synchronized

c_Ll_orit/=n_,, and we use the A.I and AGS methods (Section 3.2 and 3.3) as typical examples of

c_s_,nchronous algorithms in whiich communicati.on takes place through the use of a criti.cat

section.

The evaluation of the performance of an asynchronous iteration depends principally

on two main factors. "[he number of iteration steps required to solve the system of

equation,._ within some _;iven admi'._,._ibte error r. is one of the important factors whi.ch

determi_e the global runni.ng time of an iterative method. This number can be derived

through the tools of numeriic_al anal,ysis, and we wilt not be concerned with its evaluation

in this ._;ecti.on We will .,..limply use the empirical results observed i.n the experiments

themselves. (Upper bound.,; on the number of iteration steps for various asynchronous

iterative me.thetis have been deriv¢;d in Sec:tion 6 of Chapter 111. In the case of Jacobi.'s

method, the exact number of iterations can, in fact, be derived from the theory.) The

(average) time for each process to execute a complete cycle (i.. e., from the instant it starts

an evaluation to the instant it starts the next evaiuati.on) is another important factor

contributi.n8 to the p.toba[running ti.me. This factor is evaluated in the present sec:ti.on.

We assume throutlhout that the executi.on times for the evaluation secti.on by all k

processes are independent identically distributed random variables distributed accordi.ng

to the probability di.,.Jributi.on Fk, associ.ated with the density func:ti.on [k' Let _'k and O-k

denote their mean and variance, respectively. Similarly, we assume that the execution

times for the c:riitical section by all k proces,.;es are independent i.dentic:atty di.stri,buted

random variables distributed accordini_ to the probability distribution Ck, associated with

the den.,;ity function I_k. Let ck denote their mean. Estimates for the quanti.ties B'k and 0/¢

www.manaraa.com

160 CHAPTER V

are given Ln equations (4.5) and (4.6)_ an estimate for the quantity o"k can be derived

similarly.

in Section 5.1, we consicler .lacobi's method and, in Section 5.2, the A.I and AGS

methods. The results deriv'ed in these two sections are compared, in Section 5.3, with the
J .

experimental results.

5.1 - Synchronized alF,orithmn

It follows from our parallel implementation of Jacobi's method that each process

cooperating {n the evaluation of an iterate has the cyclic behavior depicted {n the diagram

of Fit_ure 5.1.

Evaluation WattinF, Waiting Critical
t t t t I

section section section section

part l part 2

Cycle

FLBure 5.1 - Cyclic pattern of a process with Jacobi's method

The first waitinB section is due to the full synchronization of all processes at the end of
,

the evatuatio.n of an iterate and before the evaluation of the next iterate. The second

. waiti.nF_ secti.on is simply due to the presence of the critical section used for updatin B and

reading the values of {he components of the current i.terate. (A process might have to wait

Lf another process is already executinp= the critical section.) The averaBe time t k to

execute a complete cycle in the parallel implementation with k processes can, therefore,

be decompo_;ed as:

t k - ak • bk, (5.1)

where ak and bk are the average execution times for the first and second parts of the

cycle respectively.

www.manaraa.com

EXPERIMENTAL RESULTS 16 I

Let us fi.r_t con.,_ider the quantity ak, It corresponds to the targest fi.nishing time of

the evaluation section by the k processes. When k <:p, therefore, ak is simply gi.ven by

the average of the maxirnurn of h independent random variabtes distributed according to

the .,_ame probabitity distribution F k, and we have (see, for exarnpte, [14, p. 46]):
/

CO O0

_k = io t._Irk">] : /o [_-rk_'>]"" (5.2)
where, for clarity, the index k has been dropped from F k. Let us examine some

probability distributi.ons Fk for which analytical results can be derived from

equation (5.2).

(i) Exponenti.aI distribution with parameter /J ,-,_. Using si.mpte integrat

calculus, equation (5.2) yietds:

., - 4°0i - : J/o ' _.''"d,,

I z zl= -P l._i_k -_ l_i_k '

: _ Hk = Hk.r,k, (5.3)

where H k is the k-th harmonic number.

(U.) Uni.form distribution over the interval [_'k--or/_#33,_k*rrk_'] (i. e., with moan _'k

and standard variation ork). Integration of equation (5.2) yietds, in this case

(see, for exarnt)le, [14, p. 27]):
! ,

% = _k + k_-Lo.k ,/_ (5.4)k+l

Skmitar restiIts can be obtained for other prol)al)itkty distributions F k, but unfortunatety

they usually cannot be expressed so ea.,,ity. For most common probabili.ty distributions

Fk, however, <zk is shown to be in the form ak = Ck + Wk'rrk (as is the case in

equati.on (5.4), for example), where the coefficient wk (whi.ch depends on F k) can be found

{n many nunmr_cat tames. (See, for exampte, [[4, p.50] for a short tabte ttsttng o_k i.n the

case of the norrnat and the uniform distributions.)

When k > p, the quantity ak cannot be obtained directty from equation (5.2) since, as

tong as i. processes, wi.th p < i ._k, have not cornpteted their evaluation secti.ons, they are

in competition for the p processors avail.abte, and they are, therefore, stowed down by the

www.manaraa.com

! 62 CHAPTER V

factor P_. Let x.i., for J .,; i. < k, be the /.-th smartest execution time requi,red by the k

proces,Jes. The fi.r,,;t process to complete its evaluation secti,on has to share the p

processors with the remaining k-J processes during i.ts entire execution. It fini.s.hes

k Si.mitariy |he second process to complete i.ts evaluati.on
therefore after a time Yl _-p _'1"

section, fi.nishes after a time Y2 = Yl * k-_[(_l_X.2)" The last process to complete i.tsP

evaluation secti,on finishes after a time:

o.k = .k..x.!p . "P--k-J(_'2 - X'l) + "'" * I_J--(_'k-pp - _k-p- 1) + (:_k - _k-p) . (5.5)

The quantities x./, for ! ._ / .,; k, can be evaluated directly from the distribution function F k,

and we have (see, for example, [14, p. 25]):

t it) [l-f-(t)] t_-i dF(t), (5.6)o k(k-t)4
where, for (:tav'ity, the i.ndox k ha.,.,been dropped from Fk. At[ain, _ can be evaluated

expti,ci,tty for some di'._tributi.on fun(:t(ons Fk. In parti,cu[ar, we have the following results.

([) Exponential distribution with parameter /z -4" Integrating equation (5.6) by

parts and sotvi.n 6 a re¢:urren{:e rotation, we find that=

1 ,_ 1 = [Hk_Hk_i]_k

where t-t0 ls defi.ned to be 0. We deduce i.mmediatety from equati.on (.5.5) that:

ak = [&:A . Hp]_k" (5.7)P

(ii.) "Uniform distribution over the i,nterval [_:k-Cr/p/J", t:k.o'k_3" j. From [14, p. 27']),

we obtain:

x._ ._.. r.k k-2i+! o.k _.

We deduce immediately from equation (5.5) that, [n this case:

a k . "Pk_,k * l?."k+11o.k _ . (5.8)

Agal.n, for other probability d[stributi.ons Fk, equation (5.6) can a|ways be integrated

numerically, and, for most probability distributions, numerical tables are available (see,

for example, [60] for the normal distribution).

Let us now con._ider the quantity bk of equation (5.1). Si,nce all processes wilt try

to access the critic:at section at the same time (when the last process completes its

evaluation), bk i.s simply given by:

bk = ._1(ck 4.2c k * kck) ,_ 2k*--!'lck

www.manaraa.com

EXPERIMf:NTAL RESULTS 163

Tal)le 5.1 summarizes tile results of this section and presents, for k = L, 9, 6 and 12,

the avera6e time t k for a complete cycle, when tile distribution Fk is exponential, normal
i

and ut_iform. In these three cases, the parameters _k and ck are taken directly from the

estimates derived in Section 4.2.2; e"k has been estimated in the same way. These results

are compared to the results derived from the experiments presented in Section 4.3. (At[

timings [n the table are given in m_.)

k:! k=3 k.--6 k= 12

Exponential: 1338.50 1087.99 923.27 872.88

Normal: 1338.50 694.90 513.73 604.39

Uniform: 1338.50 696.74 511.37 589.70

Experimental: 1327.47 700.20 515.96 629.42

Table 5.1 - The average execution time for a complete cycle with Jacobi's method

We notice that the exponential, distribution certainty does not predict adequately the

experimental re_;ults. A rea.,;on for thLs disc:repancy is that the exponent[at distribution

does not take into at.count the .,_tanclard deviation o'k, which is a direct mea.¢;ure of the

fluctuations in the execution times of the evaluation section. These fluctuations have an

_mportant role in the case of JacobL',.; method since the processes (in the first part of their

cycles) synchronize themselves on the lar[;est executi.on time. The results obtained with

the normal and uniform distribution, on the ottler hand, show a fair agreement with the

experimental result.,;; the difference, in this case, is parity due to the fact that the

experiments have not alway'.4 been run i.n a consistent manner (for instant:e, the results

presented Ln Secti.on 4.2 and 4.3 have not been obtained with the same number of

processor.,;).

5.2 - Asynchronous algorithmn

In the parall.et implementations of the AJ and AGS methods, the processes

www.manaraa.com

164 ' CHAPTER V

cooperatinl] in the evaluation of an iterate have the cycli,c behavior depicted in Fi.sure 5.2.

In this case, the waiting section is only dtJe to the presence of the critical section.

Evaluation Waiti,ng Critical.
l I -t I..... |

section secti,on secti,on

Cycle

Fi,gure b.2 --Cycti,c pattern of a process with the A.I and AGS methods

The parallel i.mptementati,on with k processes on p processors can be modeled by

.:).3.the queuei,ng system of Fi,F,ure _ "

I I ,

.... (l)j

f >®.....', ,'.............Q , , r.'llll >® '
" /" I LI I

\\ :,_ / i
I

I
• I

Ca) k customers tn the whole system: our processes|

(b) p servers in sy._tem (|): the evaluation sectionl

(c) I .,_erver in system (2): the critic:at sect(onl

(d) w(th the restriction that at most # servers are

active at the same time in the entire system,

Figure 5.3 -. A queuein8 system for asynchronous algori,thms

Thi,s queuei.n8 system has been extensively studied i.n the case k -- p as a model of

ti.me--shared process;or [55], [33], when the two probabili.ty distributi,ons F k and C A are

,exponent(at. We show that the results can be extended to the case k ;_ p.

Let us assume that fk and C k are exponenti,at distributi,ons w(th parameter /z _ l/a'/¢

www.manaraa.com

EXPERIM[!NTAI. RESULTS 165

and X .-. I/e k, respectively. For i = O, l, ..., k, let qi be the steady state probability that L-.

customers be in system (1) of Fi,gure 5.3 (i,. e., i processes are executing their evaluation

sections, while k-i processes are ready to execute the critical section). Let _r0 denote tile

probal)i,ti,ty that no process I)e executing the cri,ti.cal, section, either because at[processes
.,

are within their evaluation secti.ons or, possibly, because no processor is oUocated to a

process ready to ez.ecu.te the critical section.

We a.,_suma throughout that, if there exists at any time in the entire system i

processes, with L > p, whi,¢h are not blocked (waiting for another process to complete the

critical, section), each of the i processes receives the same fracti,on P_of the computing

power. It follows directly that the probabil,i,ty tr0 is given by:

_0 = qk + ___ _"_P + !p<i.._-k-I _ + I qi" (5.9)

Theorem 5.1 =,

• Assume that k __p. The average time t k required to execute a compl,ete cyc[[e is

given by:

t k = k ck /(1-_(0), (5.10)

where tr0 is the probability that the server of system (2) be idle (i. e., no process is

executi,n[,, the c:ritical ,.;e.(tion, although some may be bl,ocked becmJse no processors

are available). If we assume that each process which is not bl,ocked receives an equal

share of the computi,n8 power, the probab[[l,i,ti,es qi, for i = O, 1, ..., k, satisfy:

f qi if i_k,

qi = 0.+1) _k..-_l._t_k-ii! qk if p _ i < k-I, (5.11)

p _#k-i, qk if 0 _;_ _ p-J .

Proof:

|

Equations (5.10) and(5./l) are immediate consequenc:es of simple resul,ts of

queuein6 ttleory. Fquati,on (5.10) fol,l,ow,._directl,y from Uttie's formul,a (see, for exampl,e,

[33, p.17]) by con.,_ideri,ng the throughput of system(2). Equation(5.11) el.so fol,tows

directly from the fatt that (und_:r the exponential, assumption for both F k and C k) the

www.manaraa.com

166 CHAPTER V

sy_;tem of Fi.gure 5.3 corresonds to a pu,re bi,rth..cleath process (see, for example,

[33, p.89]). I

T.he average e×ecution ti.me, tic, for a complete cycle can now be evaluated from the

result_ of Theorem 5.1 using equation (5.9) and the fact that:

qo + q! + "" . qk = 1.

5.3 - A comparitmn with the experilnental results

The results of Section*.; 5.1 anti 5.2 provide us; with an esti.mate of the _veralse time

t/¢ requi.red to execute a complete cycle in tile para|Let implementation w_th k processes of

Jacob_'s method and of the A.I anti AGS method._, in order to evaluate the total runnLng

tLme T k for the throe methods, we also neecl some estimate of the number of Lterati.ons N k

requLred by each of the mettled.,., Ln the parallel i.mplementat_on wLth k processes. In the

case of Jacobi.'s method, Nk does not clepend on k and can be computed anatyti.calty from

the spectral, radius, f,(B), of the Jacob[matrix. In the case of the AJ and AGS methods, we

have si.mpty chosen to take directly the number of iterations observed i.n the experiments

themselves.

The total running time Tk -Nk.t k now follows i.mmediatety. The resutti.ng values

are plotted in Fi.gure 3.3, along with the values observed from the experiments. (In the

case of Jacobi's method, t k is evaluated using for Fk a uniform distributi.on.)

www.manaraa.com

EXPERIMENTAl. RESULTS ! 67

Time (sec.)

400 •. • • Experimental results

........ Theoretical results
350

• l

3OO

250200 _ __._ \ ,,_._._:.::_:..:;...... .--Jf'"". - III I__I_-_ .I_III _II III........

Jacob[

1 5 0

• • ,ii. I 9

50

0 _ =---+-----tI I ' i ! = _ _ _ ;- I
0 ! 2 3 4 ,5 6 1 8 9 10 11 12 13 t4 15

Number of processes

FiEure ,5.4 - Experimental and theoretic:a[runnin8 times

We see that the "theory" matches fairly well the actual measurements especialty in

the case of most interest, [. e., when k _ p (clearly we cannot expect any Bain from using o

'more. processes than processors), in particular, if we rely on our model, at least for k _ p,

we can compute the optimum value for k (beyond which no gain is obtained), and we find,

in parti.cular, that

14 for Jacobi.'s method,

kop t = 15 for the A.I method,

12 for the AGS method.

...................................._ ,,o_: :i _ _,, ,=_........................, :..................

www.manaraa.com

168 CHAPTER V

6 - Concludingremarks

The actual implementati,on of parall.et algorithms on an asynchronous mul.tiprocessor

has proved to I)e an invaluable help for provi,ding us wi,th a better understanding of

parattet algerithm.,.,, for iUustrating .,;ome of the notions and concepts associated wi.th these

algorithms, and for _;upporti.ng some of the assumpti,ons that we have introduced in thei.r

analysis. In parti.cuLar, the fi,gures of Section 4.2.1 show clearly that the execut{on t_me of

a program can hardly be regarded as a con,._tant, and that it is more accurate to consi.der

this execution it,me as a random variable distributed according to some probabLIi.ty

distributi.on. In view of the histograms presented in Fi.gures 4.2 through 4.9, an Erlang or

a normal distributi,on s_eems to be a rea.,;onabte approxi.mation, tn our case, to account for

the fluctuations tin the execution times of the programs that we have implemented on

C.mmp.

These experiments also constitute a c;tear i,ltustrat_on of the advantage of purely

asy_c:hronou,._ algorithms over synchronized algorithms. To gi.ve a quantitative evaluati,on

of the effects of ._ync:hronization, assume that i,t takes ! unit of it,me for a process to

perform one step of the iteration (exctudi,ng any overhead). Then, i.t follows from the

results we have pre_ented 'that, [n a pa|'ailet implementation with 6 processes, Lt wi.Lt take

each proc:ess an average of about 1.05, 1:62 and 2.34 uni.ts of time wi,th the PA, the'AJ and

Jacobi's method,._, respecti,vely, to perform the same step of the i,teration (for that matter,

both the A.I and the AG$ methods have the same behavior). White the overhead in the PA

method (about 57.) is mai.nty clue to memory contenti,on, the overheads in the AJ and

Jacobi.'s method.,_ mea.,_ure almost directly the effects of using critical secti,ons and of using

full. sync:hroni,zati,on between the processes, respecti,vel.y.

In addition to the experiments reported in this chapter, we have also run some other

experiments to con.,_ider the effect of the i.ntroduction of a retaxati,on factor Ln the

different i,terative .,_chemes. These results confi.rmed exactly the simulation resutts

obtained by Rosenfeid and presented Ln [52]. In parti.cular, white we are guaranteed of

.......................... _ ,,,,................,_:_........ _..,_,,,_,_... .,_ .,,,

www.manaraa.com

EXPERIMENTAL RESULTS 169

the convergence of any asyf}chronous iterations when we use a relaxati.on factor c_ i.n the

range 0 < c._<2/[l+p(B)], this is not so when c_ ;_ 2/[I+p(B)], and divergenc:e was, i.ndeed,

often observed (for the problem that we have considered, p(B) ,,, 0.P91, thus

2/[1*f,(B)] ,,, 1.005).]t ._;eemr_to be very ur;efu[to obtain more (experimental or anatyt_ca|)

result.,., on tile effect._, of u'.;[n8 relaxation fa(:tor,.;, since our experiments show that (when

convergence is actlieved) it is a very promisin G way to accelerate the iteration.

The results presented in See.lion5 are also an interesting aspect of this chapter.

We have shown how _;_rnple techniques from order statistics and queuein8 theory ¢:outd be

adapted to the anaty,.;is of algorithms for asynchronous multiprocessors. The anaty_.;is that

we have developed 8i.ves a fair account of the experimental results. This i.s very useful in

practice since it can be used to predic.t the opti.mal decomposition of a problem (i.. e., the

optimal, number of processes to create in order to, for example, minimi.ze the overall.

execution ti.me).

www.manaraa.com

170

www.manaraa.com

I

• Chapter Vl

Conclusion

1 - A summaryof the results and their implications

An evident advantase of using asynchronous muttiprocessors, and parall,el, computers

in general., rather than conventional uni-processors, is to be abl,e to substantia|l.y reduce

the execution time required for soLvin8 a probl.em. Given a parti.cutar paral.l.et computer,

therefore, one of the first F,oal,s in designinl_ a para|l,el, a|8orithm for solving a probl,em is

to try to mini.mize the requlred execution time on the given machine. This Leads us
b .

natural,l,y to consider the execution time of a paraLl,et a|8orithm as one of the pri.mary

measures of the performance of the al8orithm.

When we consider a seqltetttial a|8orithm for sol,vlng a 8lven probl,em, say, sortin 8 or

matrix muttipl,ication, the number of comparisons or the number of sca[ar mul,tlpLicatlons

performed by the al8orithm is usuall,y used as the measure of compl,ex[ty of the aLF,orithm.

In this respect, para||el, alEorithm_ for .C;]MDmachines are. very simLl,ar to sequent[at
i

algorithm.,;,, in the sense that, in this case, the number of parnllel instrttcti.ons (e. 8., parallel

contp_zrisons or p(trnllel nttdtipli.c(_tions) is the usual, complexity measure of an alEorithm.

The intuitive reason for tt_is cost measure with both sequentia(a|gorithms and paraLLeL

atEorithmn for SIMD machines is that the execution ti.me in these two types of al,8orLthms

Ls directly rel,ated 1o the number of instructions executed, and that, therefore, i.t i.s

realistic, to only count those [n,.;tructi.ons for performance eval,uat[on purposes.

When we are deati.n8 with a paralLeL alsorithm for asynchronous mult[processorsp

www.manaraa.com

!72 CHAPTER V]

however, i.ts non-deterministi.c behavior contributes to makin 8 i.ts analysis drasti.catty

different from the analysis of a sequenti;d al£,orithm. In particular, there usua|ty does not

seem to exist a direct relation between the (averaBe) execution time of a parallel

alEorithm for mul.tiproces_;or and the number of instructions executed by each of the

processes. As an [tltJstration, let us examine asain Jacobi's method for solving a ((,near

system of tt equation_;, and consider a parall.et i.mptementati.on with k processes i.n which

each process evaluates q .. n/k components. Let us f_rst choose, as a measure of

performance for thi._ implementation, the numl)er of parallel et_alttations of a component "

(or, wi.thi.n a factor of rt, the number of p(lrallel rtzultipUcati.ons). The immediate conctusi.on,

En this case, is thai, in order to (lecrea._e the cost of the aIBorithm, we should always

[ncrea._;e the number of processors. Let u.'_now consider direct|y the total averase time Tk

required to perform one .'ffep of the iteration with the parallel [mptementati.on wi.th k

processes. Assume, as before, that the execution ti.mes for the evaluati.on of q components

by all. k proces.,;es are independent identi.call.y random variables distributed accordi.ng to
I

an exponential di_.,tribution with mean _'k' lhen, due to the synchronizati.on between the

processes, the total average time for one iteration step is 8(.yen by Tk = Hk._,k, where H k

/b
is the k-th harmonic number. Let us further assume that _'k [s of the form _'k _ a *

(which ic, natural in view of our decomposition). Then, it follows thai for large k, the total

averase ti.me Brow.'., with k like ml.n(k) and, thus, increases as the number of processes
e

increa.,;es. Therefore, we conclude, in ttlEs case, that there exists a (finite) number k of

processes which minimizes the total averai]e ti.me Tk. This (s i.n contradicti.on wi.th the

conclusion derived from usi.n6 the other cost measure.

This example ._how.,.. that the analy.,;is of the efficiency of a parallel alsorithm for

asynchronou,.; m|JI,tiproce.-',_.;or.-', usuatl.y requires techniques very different from those

prev[Ou_;I.y developed i.n the analysis of sequential alF,ori.thms or par(all.el, a(8orLthms for

$IMD machines. We think that one of ttle main contributi.ons of thi.s thesi.s i.s to have

presented and u.,;ed very diver.,.,e techniques applicable tn the ana!ysLs of paratl.et

at_.;orithms for asynchronous muttipro(essors. These techniques are used t.n various '
I

www.manaraa.com

CONCLUSION 173

appticati,ons areas. The analyses developed i,n Chapter II Secti,on 5 and i,n Chapter IV

Section 7.3.1, for i,nstan(:e, are related to some analyses commonly found i,n Operati,ons

Research, while the treatment of Secti,on 6 of Chapter tl appti,es some techni,ques typi,caI of

renewal theory. In Chapter Ill Secti.ons 6 and 8, the complexi,ty of asynchronous i,terati,ve

methods i,s derived usi,nF, the tools of numerical anaIysi,s (thi,s i,s obvi,ously due to the

nature of the problem treated in this chapter).

We also have presented in Chapter V Secti.on 5 some of the techni,ques whi,c:h seem

to be most typi,cat of the analysts of parallel aLl_orithms for mutti,processors_ namely

techni,ques drawn from order stati,sti,cs and from queuei,nl_ theory. An iºmportant advantal_e

'of thi,s approach i,s that a lar8e number of results are available from well developed

• theories. Most of these result._ are (lirectly appti,cabl,e to the anaiys_s of parallel.

atsorithrnn for asynchronous multi,processors, and we have shown, i,n parti,cutar_ that a very

•._i,mple queue_ns model, lint,flatly _ntended to represent a time-.shared uni,-processor)

accounts appropriately for the behavi,or of an asynchronous parallel attJ,orithm i,n whi,c:h

the processes communi,cate amen E themselves throut_h the use of a cv_t_ca(sect{on. These

results can be u.,;ed to predict the opti.mat decompos_ti,on of a problem (i,. e., the opt_ma[

number of processe. _, (:ooperati,nF, i,n the soLuti.on of the problem). Some other examples of

the use of queue[n8, theory to the anaiysi,s of parallel alBert,thins for multi,processors are

also presented i,n [51] wi,th various appt_cati,ons to sorti,n8 alsorithms.

A defi,ci,ency common to several of the analyses that we have presented i.s that, i,n

;ome cases, ".;tron8 a;suvnpt[on.,., mu,.;t be made i.n order to be able to carry out the anatysi,s

of an ale,or[thin. In Chapter]I Secti,on 5 and i,n Chapter V Secti,on 5.2, for Instance, our

results are ba._;ed on the assumpti,on that the various executi,on times are exponent[al.ty

di,stributed. We have observed, however, that whenever we were also able to deriºve an

analysi,s of an asynchronous aLsorithm based on other (more reati,sti,c) probabi,li,ty

diºstri.butiºon.,; (see Chapter]I Secti,on 6, for i,nstance), the results did not show any

sub_;tawtia[,di,fferences wi,th the results derived from the exponenti,at di,stri,buti,on.

www.manaraa.com

.l 74' CHAPTER VI

Ivloreover, tile analylica[results deft.red in Chapter V Section .5.3 are l.n excetlent

al_reement w_th the experimental results that we have presented _n Chapter V. Therefore,

[t ,.;eems that, although the exponenti.al di.,_tribution i.s not necessarily a very reali.sti.c

assumption for the di.'Jribution of the execution ti.mes, Et stEl[provi.des us with useful

results for async:hronou.,_ alBorithms. In the case of synchronized alBert,thins (see

Chapter V Secti,on 5.J), however, analyli.cat results obtained wi,th the exponenti.a[

di,stributi,on do not show an excellent al_reement with the experimental resultsl whereas a

closer approxi.mation i.s achieved wi.th the normaLand the uniform distributi.ons. A reason

for th_s discrepancy i,s that the fluctuations are measured di,rectly by the standard

•deviation of the probabi.l[ty distribution and this cannot be captured by the exponenti.at

distributi.on (for wh[ch the standard deviation is the same as the mean).

Another very i.mportant aspect of the thesis _s to have presented and Utustrated

;ome of the notion., and concepts uni.que i.n the desi.gn of parallel all_or_thms for

asynchronou.,; multiprocessors. The alt,,orithm proposed i.n Chapter]I, for example,

_llu.,;trates an a prior{ very counter.;intui.tive idea that the executi,on of a purely sequenti.a|

proEram (.an be sped.-up on an asynchronous multiprocessor w(thout introduc_nl] any

parattet_,.;m within the prol_ram i.tsetf. The acceterat(on Ls achi,eved by de(ompostng the

prosram _nto a suc(e_,s[on of ta,.;ks (exe(uted seri,ally), and by tak[n8 advantal_e of the

JT_LctcLc_t.Lons_n the execution times of the tasks. These fttJ_tuatLon_ Ln computLnp_, tLmes

represent a di.mens{on unique {n the desii]n of paratl.et alBert,thins for asynchronous

muttiproc:essors. Their (onsequences are twofold. A negati.ve aspect i,s evi,denced wLth

the examp[e of .lacobL's metllod presented [n the Lntroductory chapter; the net effect, i.n

th_s case, iS to create a substant_al overhead due to the use of a full synchronLzat_on of

the processes. The algorithm of Chapter]1, on the other hand, demonstrates that the

ftuctuati.ons i.n the ¢omputi,n[,, li.mes can actually be used to ac¢.elerate the executi.on of a

proL_ram. AItholJl_h we do not feet that the alt_orithm i,n thi.s chapter should be used

di,rectty as it [s presented, we thi,nk that the i,dea embedded _nto the algori,thm can be used

together wi.th other considerations, such as retiabULty, _n the construction of asynchronous

www.manaraa.com

CONCLUSION ! 75

a[gori.thms. Probabl.y the most i,mportant aspect of the alBori,thm presented in Chapter II i,s

that [t lLtustrates the fact that i.nnowdi.ons are requi.red for the design of paraLLel.

algorithms for asyt_chronou._ muttiprocessors.

The experimental result._ presented i,n Chapter V are fundamental [n the thesis.

They tend us i,.nsi,ght into the behavi,or of parall.el, programs executed on an asynchronous

mul.ti.processor; and, with a better understandinF, of thei.r behavi.or, we can expect to be

able to (lesi,gn better parallel algorithms for mutt(processors. In additi,on, they have been
/

parti.cul.arly tJseful [n validatinl] some of the assumpti.ons that we have made in our

analyses. These experimental results are i,mportant in another practi.ca[aspect, namely,

they provi,de us w(th a quantitati,ve comparison of the different uses of synchroni,zati,on.

The results that we have menti,oned so far contribute directly toward the general

ileal of the thes[._,: (iosign and analysis of parallel, algorithm_ for asynchronous

muttiprocessors. Some of the results of the thesi.s seem to be of theoretical and practi.cat

importance i,n thei,r own rights.

In Chapter]II, for i.nstance, we have Lntroduced the class of asTnchronolLs iterc_tilpe

m.ethocls to remove the need for synchroni,zation in the i,mpiementati,on of i.terati,ve methods

on a multi,processor. We thi,nk that the results presented i,n this chapter are a contri,bution

t:o the area of iterati`ve methods, and, in particular, they provi.de some extensions and

genera|izatLons of previ,ously pubti,shed results ill], [41], [42], [.q3], [50]. Theorem 4.1,

for exampte, extends the convergence results obtained by Chazan and Miranker for chaotic

lterati,ons [11], by relaxing a technical condition that they had i,ntroduced; furthermore,

our results also provide a generalization to non-Linear operators. The results of

Section 5, on the (:[a.,_s of nsynchro_ol_s i.ler_ti.lJe methods w_th rt_ert_oryj also generalizes

some of the results obtained by Mieltou [,q2].

Chapter IV contai,ns some i.mportant results concernLLng the _--_ pruning atl]ori,thm,

We have shown LLn the first parl of this chapter that the branchi,n8 factor of the

www.manaraa.com

] 76 CttAPTER Vl

w-/t pruning aLt_orithm in a uniform game tree of degree n is O(ttAn t_), when art bottom

values are a_.;si.gned i.nctependent identically distributed random variables. This c:onfirms a

claim by Knuth and Moore [35] that deep cut-offs only have a .,_econclorder effect on the

behavior Of the aLsorithm. "the results of the second part constitute the main contribution

. of Chapter IV. We have proposed in this part an asynchronous parallel [mplementati.on of

the w.[t prunin 8 alt:,.orithm. Our analysis of the parallel, i mplementati.on with k processes

how, rather surpri_insty, that the speed-up is tarBer than k. This implies that the

(sequential) w.-/_ pruninB algorithm is not optima[and can be substantially improved upon.

this particular result, which has been obtained very indirectly in the thesis, misht find

applications in the area of Artificial InteltiBence.

2 - Some topics for future research

We certainty do not believe that we have covered in this thesis every possible

a_poct of the de,,..,isn and the analysis of all_orithms for asynchronous multLprocessors,

Clearly, much researrh remai.ns to be done in this area, and this section mentions several

topics for fu|ure research.

We thi.nk that the thesis has clearly illustrated an important characteristic, of

aLEorithms for muttipro(essors, namely, the a priori unpredictable behavior in their

execution. This characteristic, therefore, makes it an absolute requirement to consider

very carefully the correc:tnes_.; of parR[Let aLgorithmn for mutti pro(essors, and research in
/

thi.g area would certainly be very useful. We are (personalty) convinced that every

alt_orithm proposed in this thesis performs correctly, and we have also given (we hope)

convincing arguments for their correctness. However, in each case, the proof of

corre.,ctness is ba.,;ed on techniques which are, usually, only adequate to the problem at

hand. A format (and [;enerat) theory would certainly be a very useful tool for the design

of algorithms for muttiprocessors.

Probably, the greatest emphasis of the thesis has been placed on the analysis of

............... i_]

www.manaraa.com

CONCLUSION 177

parallel all_orilhmn for asynchronous multiprocessor.,.,, and we have presented (and used)

diverse techniques which appear to be applicable to numerous problems.. Those

lec:hni.ques have proved to be effective to the alsorithms presented, but we th{{nk that most

of them could .,;t{{ll be i,mproved upon, in parliicular with rel_ard to the generality of their

applications. Pos._ible l_eneratizalion.'_ in this area would i,nclude, for i,nstanc.e, the

relaxation of some of the assumption.,; used in the various analyses that we have

presented. The execution ti,me of an algorithm has been resarded in most of the thesis as

the primary measure of complexity of the ali_orithm. While this measure is, in fact, of

primary importance in real ti,me applications, other complexi,ty measures should also be

c:on._d.dered. Process;or utilization, for' example, would be another meaninl_ful measure of

performance, particularly if an asynchronous muLtiprocessor is used Lln a multi-user

environment. In this case, {t would a[_..o lye of i,nterest to consider the possibility of

i,ncreasinl_ the proc:essor utilizatiion by multiprogrammin8 several programs (for example,

several' instances of the same parallel ail]orithm).

The experiiments pre,_sented in Chapter V have proved to be an invaluable tool.. In

I_eneral, direct experimental{on on an asynchronous multiprocessor can be very useful

especially' when it is diffi,eult Io derive any analytical results. In particul.ar, it would be

very interestin6 to perform more experiments with asynchronous iterations, for example,

to consider the effects of usinF, a relaxation factor. Other experiments could also be

performed to evaltiate .<_ome of the odoptati_e os:ynchronoiLs iterotior_ described in

Secti,on 3.4.2 of Chapter V.

+ • , : . ,, : •

The parallel implementation that we have proposed for the c_.-/_pruni,ni_ algorithm

appears to be very efficient when few processes are used, but the maximum speect--up

achievable with this mettled is typically limited to 5 or 6 even with an infinity of

processes. It does not ._eem that a direct adaptation of the o_--/_prun{nF, atl_orithm into a

parallel aLl_orithm i,s the best approach to follow, particularly because it is based on a

depth first search, which is i.nherently sequential. A better approach would probably be

www.manaraa.com

! 78 CHAPTER Vl

to consider a game tree .,_earchin 6 algorithm based on a best first search along with a
J

pretiminary evaluation of the internal no(los.

Last|y, we view this thesis as a first step towards a systematic study of the issues

raised by the design and the analysis of all_orithms for asynchronous mul.ttprocessors.

www.manaraa.com

Bibliography

[1] Anderson, J. P., Hoffman, S. A., Shifman, J., and Wil,Li,ams, R. J., D825 - A multi.pie
computer s_,.,..tem for command and control., Proceedi.nRs o[the Af'IPS 1962 Ecru JoLnt
Com.ptLtet" Conferel_ce, Vet. 22, 1962, pp. 86-96.

[2] Andler, S., Synchronization primiti,ves and the verifi,.cat((on of concurrent programs,
Carnegi,e-MeUon Univer.,;i,ty, Computer Sc:i,ence Department Report, May 1977.

[.3] Barak, A. B., and Downey, P. J., Asynchronous parallel, executi,on of a chain of tasks
w((th i,nterrupts, [he Pennsyl,vani,a State Universi,ty, Computer Sci.ence Department
Report, December 1977.

[4] Barak, A. B., and Downey, P. J., Using task dupti,cation to reduce fi,nishing time, The
Pennsy(vani.a State Uni.versi,ty, Computer Sci.ence Department Report, February 1978.

[5] Barnes, G. H., Richard, M. B., Kate, M., Kuck, D. J., Sl,otnick, D. L., and Stokes, R. A., The
ILLIAC IV computer, IEEE Transactior_s on CorttptLtert, Vet,. C-17, No. 8, August 1968,
pp. 7462757.

[6] Bat|clef, G. M., A._,ynchronous i.terative methods for mul,tiprocessors, .Io_Lrnal o[the
ACM, Vet,. 25, No. 2, Ap|'i.t 1978;, pp. 226-244.

[7] Baudet, G.M., On tile branching factor of the Alpha-Beta pruning algorithm,
Carnegie-Mellon University, Computer Sci.ence Department Report, September 1977.
(To appear (in Atti.ficiaL]ntell.iRence.)

[8] Baudet, G. M., Hr,;at, R. P., and Kung, H. T., ParaLl,et execution of a sequence of tasks
on an "asynchronous mu((tipt-ocessor, Carneg(e-Mel.((on University, Computer Sci.ence
Department Report, June 1977.

[9] Baudet, IZ_.,and Stevenson, D., Opti,mal, sorti,ng a|gori.thms for parall,el, computers, IEEE
T_'(zr_se_c..tLor_seta.Cort_pl_tert, Vol.. C--27, No. l, January 1978, pp. 84-87.

[10] Charnay, M.,]t_ration.,_ chaotiques _._ur un produits d'espaces m_tri.ques, Th_se de
36.me cycle, Uni,ver,.;itL, Claude Bernard, Lyon, 1975.

[1 |] Chazan, D., and Miranker, W., Chaoti,c rel,axati.on, Linec_r AlRe6r_ c_nd Its Applgcotions,
Vet,. 2, 1969, pp. 199-222.

[[2] Chen, T. C., Ov(-.'r|ap and p(peli,ne processi,ng, i,n lntrodu.ction to Cort_p_Lter Al:chitect_Lre,
ed. by t4. S. Stone, Sci,ence Research Associ,ates, ChicaRo, 1975, pp. 375-431.

[13] Courto[_'-., P. J., Heymans, F., and Parnas, D. L., Concurrent control, wi.th 'readers' and
'writers', Cort_mur_icoti, ons of the ACM, Vet,. 14, No. 10, October 197], pp. 667-668.

[14] Day(d, FI. A., Order Statistics, John Wiley and Sons, New York, 1970.

[[5] Digital Equipment Corporati,on, BLISS-II programmer's manuel., DEC, Maynard, 1972.

179

............. _ ,............_,__......................._,,:..........

www.manaraa.com

180 ' '

[16] Dijkstra, E. W., Co--operat[nF, sequential processes, [n Progr'amminR LanEt_<=ges, ed. by
F. Genuyc_, Academic Press, I_;w York, |966, pp. 43-112.

[17] Oi.jkt;tra, E. W., A Di,sci pUne of ProgramrninR, Prenti.ce-Hal.l,, Engl,ewood Cl.i,ffs, New
Jersey, 1976.

[18] Donne[l,y, J. D. P., Peric)dic chaotic retaxatton, Linear Algebra and Its Appl_.cationsj
Vet. 4,]971, pp. 117-]28.

[19] En.¢;|ow, P. I.t., k4ult[processor organi.zation - A survey, Compttti.nE Surveys, Vet. 9,
No. 1, March 1977, pp.]03-129.

[20] Fl,on, I,.., On the tit:stun and veriftcati.on of operati.ng systems, Ph.D. d[ssertati.on,
Carneg[e-Mel.ion University, May 1977.

[21] FI.ynn, M. J., Very hiF.h--speed computing systems, ProceedinRs of the /dEE, Voi,. 54_
No. 12, D(:cember]966, pp.]90|-1909.

[22] Forsythe, G. E., and Wasow, W. R., fini.te-Difference Methods for Partial Differential
Equ.<_tion.s, John WL(ey and Sons, New York, 1960.

[23] Full,er, S. H., Ga_chn[£,, J. G., and Git(ogl,y, J. J., Analysts of I:he alpha-beta pruni.ng
a(gorithm, Carnegie-Me.[ton Uni.versLty, Computer Science Department Report, Juty
1973.

[24] Gittogl,y, J. J., "[he Techno|ogy chess program, Artificial lntelJ_llence , Vol.. 3, No. 3, Fall.
1972, pp. 1/15-163.

[2.5] Gil,l.ogl,y; J.J., Performance analysis of the Technol,ogy Chess Program, Ph.D.
¢lis,.;ertation, Carne[_(e-Metl.on Un(versi.ty, March 1978.

[26] 14ab_:rmann, A. N., Synchronizati.on of communicati.ng processes, Communications of the
ACM, Vol,. 1.5, No. 3, March 1972, pp. 171-176.

[27] t4e[|er, D., A survey of paraltet atgor_thms [n numeri.cal, l.i,near atgebra,
CarneF, ie-Me.t(on l,Jniver_ity, Computer Science Department Report, February 1976.
(To appear (n SI/tM f_etd,ew.)

[28] t4il)bard, P., Hi..,=,gen,A., and Rodehetfer, T., A I.anguage implementati.on design for a
muttiprocessor computer system, ProceedmEs of the Fifth Annual Symposium on
Computer Architecture, Pale ALto, Cai[forni.a, April 3-5, 1978.

[29] 14i,ntz, R. G., and late, D. P., Con[rot Data STAR-IO0 processor design, Proceedi.nEs of
Cornpcon 72, IEEE Computer Society Conferet_e,]EEE, New York, 1972, pp. 1--4.

[30] .Ioncs, A. K., Chan_;ler, R..I., Durham, I., Fe[(er, P. H., Scetza, D. A., Schwans, K.I and
VeF,daht., S. R., Pro_,ramming [st;ties raised by a muI,Uprocessor, ProeeedinRs of tile
IEEE, Vet. 66, No. 2, February]978, pp. 229-237.

[31] Kantorovitch, L. V., Vtd(ch, |]. Z., and P[nsker, A. ft., Functional Analysis in Partially
Ordered Spaces (Rus_;{an), Gostekh[zdat, Moscow,]950.

[32] Kte[nrock, I,.., Certain analytic results for time-shared processors, Infer[nation
Processing 68, North-ltol,(and, Amsterdam, 1969, pp. 838-845.

[33] Kte[nrock, L., Oueueing Sy.¢tems, Vobune !: Theory, John Wtl,ey and Sonsj New York,
1975.

www.manaraa.com

BIBi.IOGRAPHY 181

[34] Knuth, D. E., The Art of Com, p_tter Programming, Volume 1: Ftmdnmental AlRorithm$,
Addison--Wesley, Reading, Mass., 2nd edition, 1973.

[35] Knuth, D.E., and Moore, R.W., An analysis of alpha-beta pruning, ArtiJ'tciaL
/ntell.il_ence, Vol. 6, No. 4, Winter 1975, pp. 293-326.

[36] Kuck, D. J., A Survey of parall.el machi.ne organization and programming, Computing
Surveys, Vet. 9, I_). J, March 1977, pp. 29-59.

[37] Kung, H. T., Synchronized and asynchronous parallel, algorithms for muttLprocessors, i.n
AlEorithm.s and Cotn.p/_x.it_; New D,'ections and Recent Restdts, ed. by J. F. Traub,
Academic Press, New York, 1976, pp. 153-200.

[38] Kung, H.T., The complexity of c:oordinatin8 parallel asynchronous processes,
Proceedi.nEs oJ: tile FiJteenth Anmml Allerton Conference on Commtmication, Control,
and Corttp_tgn R, Uni.versity of lllinoi.', at Urbana-Champaip.n, 1977, pp. 311-43.

[39] Kung, H. T., and Lehman, P. t.., A concurrent database mani.pulati.on problem: binary
search trees, Carnegi.e-Mellon University, Computer Sc:i.enc:e Department Report, to
appear.

[40] Kun8, H.T., and Song, S. W., A parallel garbage colLecti.on algorithm and i.ts
correctness proof, Proceedings oJ"the EiRhteenth Annual S..yntlaosittm on Fottndations of
CornptJ.ter Science, October 1977, pp. 120-131. I ,

[41] MiellotJ, J.-C., ltbration.,; chaotiques _ retards, Comptes Rendtts de l'Acad_m.ie des
Sciences de Paris, Series A, Vet. 278, April 19711, pp. 957-960.

[,12] MieU.ott, J.-C.,]tbrations (haotiques h retardsl Studes de la convergence dans l.e cas
d'espaces parti.ellement ordonngs, Comptes Rendtts de l'Acad_mie des ._c_ences tie
Pari.s, Serie,.; A, Vol. 280, January 1975, pp. 233-236.

[43] k4iel.tou, J.-C., Algorithme,.; de relaxation _ retards, R. A. I. R. O., Vo|. 9, R-I, April
1975, pp. 55-82.

[44] Mi.ranker, W. [.., Parallel method_.; for solvi.n8 equations, IBM T. J. Watson Research
Center, Resear(:h Report RC 65115 (No. 28250), May 1977.

[45] I_:wl)orn, M.M.,]he efficiency of the alpha-beta search on trees with
brant:h--dependent terminal node scores, Artificial Intelligence, Vet. 8, No. 2, April
1977, pp. 137--153.

[46] Ortega, J. M., and Rheinholdt, W. C., lteratitJe Sohttion of Nonlinear Eqttations in
Several Variables, A(ademic Press, New York, 1970.

[47] Owic:ki, S., and Gries, D., Verifying properties of parallel, program.,.,: an axiomati.c
approach, Comm_tn.iccztions el tha ACM, Vol. 19, No. 5, May 1976, pp. 279--285.

[48] RaskLn, L., Performance of a stand alone Cm* syslem, in CmI review, ed. by
S. H. Fuller, A. K..lones, and I. Durl_am, Carnegie-Mellon University, Computer Science
Deparlment Report, June 1977; pp. 26-56.

[49] Robert, F., Contraction._; en norme vectorieiLe, Linear Algebra and Its Applications,
Vet. 13, 1976, pp. 19--35.

[50] Robert, F., Charnay, M., and Musy, F., ltbrati.ons chaotiques sbrie-parallbl.e pour des
6qtJatLons non-lingaires de point fixe, Aplikace Matematick_, Vet. 20, 1975, pp. 1-38.

www.manaraa.com

182

[5]] [_ob[nson, J. T., Analysis, of a.qynctlronous multi.processor atgori.thms wi.th appl,i.cati.on
to .,;orti.n_, Prom,.edin_s of the 1977 International Conference on Parallel Processinl_,
August /977, pp. 12_-135. (A revi;.nd versi.on [s to appear [n]EEE Transact tons on
Software Engineering.)

[152] [_osenfelcl, .I.L., A case c;tttcty (n pro_,ramming for para|(e(processors, Contrnunications
of the ACM, Vol.. J2, No. 12, December 1969, pp. 645-655.

[53] l_osenfeld, .I.I.., and Dri_(otlº, G. C., Soluti.on of the Di.ri.chl,et probl,em on a simul,ated
parallel, proce_,t,[n8 ,._y,_tem,]nfortttcttiort Processing[68, North-Hot[and, Amsterdam,
1969, pp. 499--!_07.

[54] t_ussel,, R. M., 1he Cf_AY--I computer system, Contautnications of the ACM, Vol.. 2l,
No. 1, January J 978, pp. 63-72.

[55] Scherr, A. I,.., An Analysis of Time-Shared Corttpttter Systems, MIT Press, 1960.

[56] SLag(e, J. R., and Di.xon, J. K., Experiments w(th some programs that search game trees,
.lotLrnaloftha dCbl, Vol,. 16, 1969, pp. 189-207.

[57] Stone, tt. S., Parall.et computers, i.n lntrad_tction to Corttpttter Architectttre, ed. by
H. S. Stone, Sci.en¢:e Research A._;soci.ates, Chi.cago, 1975, pp. 318-374.

/

[58] Stone, tt. S., Sorting on STAR, IEEE Transactions on Software Engineerirtg, MolL. SE-/:I,
No. 2, March 1978, pp. 138-1[16.

[59] Swan, [_ .I., Fuller, S. H., and S[ewi.orek, D. P., Cm*: a modul,ar mul.ti.-microprocessor_
ProceedinE._ of the /tFII>S 1977 National Computer Cortferettce, Moi,. 46, 1977,
pp. 637-644.

[60] Tei.(:t_roew, D., labtes of expe(ted values of order stati.stics and products of order
stat_.,;t(¢s for .,;amptes of _._i.zetwenty and less from the normal distri.buti.on, Annals of
MaIhert_.atical Statistics, Vo|. 27, 1956, pp. 410-426.

[6J] Thompson, C. D., and Kung, H. T., Sorti.ng on a mesh-connected para(l,el computer,
Com.m.ttnications of the ACM, Vol,. 20, No. 4, Apri.t 1977, pp. 263-27 [.

[62] Var[_a, |_., Ma.tri:r]terative Analysis, Prenti.ce-Hall,, Eng(ewood Cti.ffs, New Jersey, 1962.

[63] Wtdf, W. A., anti Bcll,, C. G., C.mmp -- A mut.ti.-nfini--processor, Proceedings of the AFIPS
1972 Fall .loint Contpu.ter Conference, Vol,. 41, December 1972, pp. 765-777.

[64] Wult, W., Cohen, E., Corw(n, W., Jones, A., Levi.n, R., Pi.erson, C., and Poll.ack, F.,
"Hydra: the kernel of a multi.proce_.,.,or operati.nB system," Corttmttrticati.ons of the
ACM, Vot. 17, No. 6, June 197_1, pp. 337-345.

[65] You, S. S., and Fun8, H. S., A._;sociati.ve processor archi.tecture -A survey,. CornptttirtR
.Surveys, Voi,. 9, No. 1, March 1977, pp. 3-27.

.

