CMU-CS-78-116

The Design and Analysis
of Algorithms for

Asynchronous Multiprocessors

Geérard M. Baudet
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

April 28, 1978

Submitted to Carnegie-Mellon University in partial fulfittment of the requirements
for the degree of Doctor of Philosophy

This research was parlly supported by the National Science Foundation under Grant MCS
75-222-55 and the Office of Naval Research under Contract N00014-76-C-0370, and
partly by a Research Grant from the Institut de Recherche d’'Informatique et d’Automatique
(IR1A), Rocquencourt, France,

Acknowledgements

The advice and assistance of H. T. Kung have been instrumental in the development
of this thesis. He has been more than an advisor to me, and | would like to express very
special thanks to him for reading numerous drafts, for making many suggestions, and for
his continual encourapement.

I am also especially grateful to Joe Traub for his comments and support. As
Chairman of the Computer Science Department, he has contributed greatly to the
development of an atmosphere favorable to carrying out my research.

I would also like to thank lhe two other members of my commiltee, Bill Wulf and
Sam Fuller, for their help and cooperation.

Chapter 11 was inittally written as a technical report in conjunction with
Richard Brent, from The Australian University at Canberra, and H. 7. Kung. 1 am also
grateful to Peter Oleinick for helping me implement algorithms on C.mmp, and to
lLlevy Raskin for running the same experiments on Cm*. | would also like to thank
John Robinson and Bruce Weide, and Henryk Wozniakowski, from the University of Warsaw,
for useful comments and discussions,

Last but not least, I would like to thank my wife for her inspiration, understanding
and TLC throughout this ordeal.

Copyright (©) 1978, by Gérard M. Baudet

Abstract

The characteristic of an asynchronous multiprocessor is that it is composed of
several processors capable of carrying out the execution of their own programs in a
completely independent fashion. As a consequence, parallel algorithms for asynchronous
multiprocessors present some unique aspects in bolh their design and their analysis. This
thesis explores the issues raised by the design and the analysis of parallel algorithms for
asynchronous multiprocessors and illustrates the various notions and concepls involved
with these algorithms by considering problems in diverse areas. The thesis demonstrates
that asynchronous multiprocessors can be used efficiently in different problem domains,
provided that appropriate algorithms are used. It also illustrates various techniques
useful in the analysis of such algorithms. :

As evidenced by a series of experimental results, the computation time required by
a process to execute several instances of the same task on an asynchronous multiprocessor -
cannot be regarded as constant and is actually subject to important fluctuations. These
ftuctuations in computation times have a negative effect on the performance of parallel
algorithms when several processes cooperating in the solution of a problem communicate
exlensively among themselves. In this case, when synchronization is used, it tends to
introduce a prohibitive overhead which decreases the parallelism. On the olher hand, an
algorithm is presented o illustrate that the fluctuations are not always a negative factor
but can alco be utilized advantageously. The algorithm demonstrates the seeminply
counter-intuitive result that the execution of a purely sequential program can still be
accelerated on an asynchronous multiprocessor without introducing any parallelism within
the program itself, but only by lakinp advantage of the fluctuations in computation times.
Two different parallel implementations of this algorithm are proposed (with and without
critical section), and analyses are presented to measure the speed-up achievable.

In the domain of numerical applications, the class of asynchronous iterative methods
is introduced to remove the need for synchronization in the implementation of iterations
for solving a system of equations on a multiprocessor. This class includes iterations
corresponding to parallel impleméntations in which the cooperating processes have a
minimum of inter-communication and do not make any use of synchonization. The Purely
asynchronous method is a typical example. A sufficient condition is established which
guarantees the converpence of any asynchronous iterations. This condition is satisfied for
‘systems of equations found in numerous practical applications.

Several asynchronous iterations have actually been implemented on an asynchronous
multiprocessor. Fxperimental results are reported, and they show that the Purely
Asynchronous method achieves an almost optimal speed-up. The experiments constitute an
illustration of the various notions and concepts specific to the design and analysis of
parallel algorithms for asynchronous multiprocessors, It is also shown how simple
techniques drawn from order statistics and queueing theory can be used to predict the
experimental results with a fair accuracy.

The oA pruning algorithm serves as an example of a non-numerical application in
this thesis. The sequential algorithm is first analyzed, and it is shown that the branching
factor of the a-R pruning algorithm for a uniform game lree of degree n grows with n as
On/An n). This confirms a claim by Knuth and Moore that deep cut-offs only have a
second order effect on the behavior of the algorithm. The results obtained with the
sequential algorithm are then used to derive an efficient parallel implementation of the
- pruning algorithm on an asynchronous multiprocessor. An analysis of the parallel
implementation with k processes shows, rather surprisingly, an improvement over the
original algorithm by a factor larger than k.

il

To K
to Cunégonde

and

to my wife

vit

LLa quatriédme planéte était celle du businessman. Cet
homme était si occupé qu'il ne leva méme pas la téte
a 'arrivee du petit prince.

—Bonjour - lui dit celui-ci. Votre cigarette est
éteinte.

—Trois et deux font cing. Cing et sept douze.
Douze et trois quinze. Bonjour. Quinze et sept
vingt-deux. Vingt-deux et six vingt-huit. Pas le
temps de la rallumer. Vingl-six et cing trente-et-un.
Ouf! Ca fait donc cing cent un millions six cent
vingl-deux mille sept cent trente-et-un.

—Cing cent millions de quoi?
—Hein? Tu es toujours 1a? Cing cent un millions
de ... je ne sais plus ... j'al tellement de travail!

Je suis sérieux, moi, je ne m'amuse pas a des
balivernes! Deux et cing sept . . .

Antoine de Saint Exupéry, Le Petit Prince

ix

I

I

III

Table of contents

Introduction

1 - Introduction and motivation

2 - The design of algorithms for asynchronous multiprocessors
2.1 - Correctness
2.2 - Efficiency

3 - Thesis overview

Parallel execution of a sequence of tasks

1 - Introduction

2 - The algorithm

3 - A speed-up measure

4 - Parallel programs for the algorithm and their correctness
4.1 - A program without critical section
4.2 - A program with critical sections

5 - Speed-up ratios: - Implementation without critical section

6 - Speed-up ratios: Implementation with critical sections

-7 - Conclusions and open problems

Asynchronous iterative methods for multiprocessors

1 - Introduction

2 - The class of asynchronous iterative methods
2.1 - Definition of asynchronous iterative methods

2.2 - Examples and particular cases of asynchronous iterations

- 3 - Contracting operators

3.1 - Lipschitzian and contracting operators
3.2 - Examples of contracting operators

4 - Convergence theorem
5 - The class of asynchronous iterative methods with memory

5.1 - Asynchronous iterations with memory
5.2 - Examples of asynchronous iterations with memory

xi

0o~ O

10

13
14
16
17
18
21
22
25

31

33

35
35
37.

39
39
40

a2
a6

47
49

v

6 -

7 -

8 -
9.

On the complexity of asynchronous iterations
6.1 - General bounds: asynchronous iterations
6.2 - Additional assumplions: chaotic iterations

Experimental results

7.1 - Experiments with asynchronous iterations

7.2 - Results

Asynchronous iterations with super-linear convergence

Extensions of the results

10 - Concluding remarks

On the Alpha-Beta pruning algorithm

Part 1: The sequential algorithm

1 - Introduction

2 -

5.

q -

5 - On the branching factor of the w-@ pruning algorithm

Presentation and initial properlies of the o-# pruning algorithm
2.1 - The «-f procedure .
2.2 - Some properlies of the o~/ pruning algorithm

2.2.1 - Notalions

2.2.2 - Condition for a node to be explored

Number of nodes explored by the v procedure: discrete case
3.1 - Random uniform game trees
3.2 - Number of nodes examined: discrete case

- 3.3 - Bi-valued rug trees

Number of nodes explored by the «-f procedure: continuous case
4.1 - Notations and preliminary results

4.2 - Number of bottom positions examined: continuous case

4.3 - Discrete case versus continuous case

5.1 - Previous results

5.2 - Bounds on the branching factor of the o-f3 procedure
5.3 -~ Improved upper bound

5.4 - Numerical results

Part 2: A parallel implementation of the algorithm

6

7

8 -

A parallel Alpha-Beta pruning algorithm
6.1 - A parallel implementation for the o8 pruning algorithm
6.?2 - Some improvements on Program A
Analysis of the parallel o2 pruning algorithm
7.1 - Condition for a node to be examined under a partial search
7.2 - Average number of nodes explored under a parlial search
7.3 - The analysis of the parallel -2 pruning algorithm

7.3.1 - Optimal decomposition

7.3.2 - Implications of the results and validity of the assumptions

Conclusions and open problems

Xit

51
52
55

56
57

61

64

65

105
106
109

113
113
114
117
119
124

127

V Experimental results with asynchronous multiprocessors

1 - Introduction

2 - Description of the experiments
2.1 - The environment
2.2 - The problem

3 - Some implementations of asynchronous iterations
3.1 - Jacohi’s method and Asynchronous Jacobi's method
3.2 - Gauss-Seidel’s method and Asynchronous Gauss-Seidel’s method

3.3 - Purely asynchronous method

3.4 - Olher possible implementations

3.4.1 - Asynchronous iterations with relaxation
3.4.2 - Adaptative asynchronous iterations

3.5 - Organization of the program

4 - The results of the experiments
4.1 - Choice of the parameters -
4.1.1 - Size of the system

4.1.2 - Error on the solution vector

4.1.3 - Olther parameters

4.2 - Local behavior of the program

14.2.1 - Results of the measurements
4.2.2 - An interpretation of the results

4.3 - Global results

5 - On the analysis of atgorithms for asynchronous multiprocessors

5.1 - Synchronized algorithms
H.2 - Asynchronous algorithms

5.3 - A comparison with the experimental results

6 - Concluding remarks

VI Conclusion

1 - A summary of the results and their implications

2 - Some topics for future research

Bibliography

xill

131

132
132
133

134
135
136
137
138
139
140
142

142
143
143
143
146
146
146
151
155
158
160
163
166

168

171
176

179

S maem - g

Xiv

Chapter 1

Introduction

1 - Introduction and motivation

Parallel ‘computers and. multiprocessors offer a natural solution to the-
ever-increasing demand for computing power. At the same time, their evolution has
brought about the need for the development of efficient parallel algorithms. This need is
now becoming more and more acute since recent advances in computer technology have
drastically reduced the cost of components, and it is quite conceivable that barallel

computers composed of 1000 or more processors will be built in the near future.

Parallelism s achievable in a variety of ways, as exemplified by the various
architectures of parallel computers already existing. Following Flynn's classification [21],
we mention below only a few among the more important ones. For a general overview,
Stone [57] oﬂers an introductory presentation of parallel computer architecture; Kuck [36]
evaluates some parallel machine organizations in relation to their programming; and
Enstow [19] surveys specifically multiprocessor organization, which is of central interest

to us in this thesis.

The ILLIAC IV computer [5] is a typical example of an SIMD (Single Instruction
stream Multiple Data stream) machine [21]. Often referred to as an array processor, the
ILLIAC IV was designed explicitly for solving partial differential equations by the method
of finite differences (typically, for wealher forecast). It is composed of 64 identical

processing elements, organized as an 8<8 array, which execute synchronously the same

N

CHAPTER 1

instruction possibly operating on different data. The CDC STAR-100 [29] and the Cray-1
computer [54] are also SIMD machines in Flynn's classification. They are often referred to
as wvector computers, and they gain their efft_c:iency by providing for vector-type
instructions, capable of executing in parallel the same operation on all elements of a
variab(e size vector rather than on a single scalar. Pipelined computers and'associative
processors also belong to the class of SIMD machines; a general presentation of thelr

architectures can be found in [12] and [65], respectively.

This thesis is concerned with another type of parallel computer, classified by Flynn
as an MIMD (Multiple Instruction stream Multiple Data stream) machine [21]. Throughout
the thesis, this type of computer will be referred to as an asynchronous muwltiprocessor,

since we think this term better reflects the view we are taking here.

Examples of asynchronous multiprocessors include commercially available computers
like the UNIVAC 1108 b'l-'proce.ssor; special purpose computers like the D825 [1], produced
for command and control military applications; and research products like C.mmp [63] and
Cm* [%9]. C.mmp and Cm* have been (and are being) built at Carnegie-Mellon University
using mini-processors, slightly modified versions of the DEC PDP-11 and the DEC L.SI-11.
While C.mmp is truly a multiprocessor, in that each processor has a direct access to each
memory bank through a cross-point switch, Cm* could also be considered as a local
network, in which intercommbnicétion .takes place between clusters (each processor,
however, can actually access the entire common memory through a sophisticated address

mechanism [30], [59]).

We do not intend to go into the details of the archilecture of any asynchronous
multiprocessors.- (See [19] for a general survey of the architectures of existing
multiprocessors.) For the purpose of the thesis, it is sufficient to consider an
asynchronous multiprocessor as composed of a set of independent processors sharing a
common memory, each processor being able to carry out the execution of its own program.

In this respect the execution of programs on an asynchronous multiprocessor, unlike on an

INTRODUCTION 3

SIMD machiﬁe, is made in a completely asynchronous fashion and takes on a chaotic
appearance. This is especially true since the processors are not necessarily of the same
type, as is the case with C.mmp (composed of both PDP-11/20 and PDP-11/40), and could
actually have drastically different characteristics, parlicularly in speeds. Another reason
is that access to memory is not necessarily uniform, as is the case with Cm*. Notice that,
in this broad sense, a network of computers could be viewed as an asynchmno'us
multiprocessor as well since, in this case, the computers can still be considered o share a
common memory, although very indirectly. As a matter of fact, the algorithms that.we'
propose in this thesis for asynchronous multiprocessors are also well suited for
implementation over a network, especially if the time required for the intercommunication
between the computers is not too high compared to the time required by the computation

on each computer.

After this very brief presentation of parallel computer architecture, let us now turn
our atlention to the issue of parallel algorithms. From an algorithmic point of view, SIMD
machines have been the most widely studied to date, and particularly the ILLIAC IV type of
computer. Due to its specific strl-lcture, the efﬂpient utilization of an array processor
requires that a problem be decomposed into identical subtasks which communicate among
each o‘thcr in some regular fashion, and the range of possible applications i.S', thérefore,
limited (mainly lo linear 'algebra oriented problems). Numerous examples of parallel
algorithms for SIMD machines in the area of numerical linear algebra can be found in a

recent survey by Heller [27). Examples of non-numerical algorithms can be found, for

instance, in [9], [58], and [61].

Being composed of a set of independent processors, an asynchronous multiprocessor
allows for greater flexibility in its programming than does an SIMD machine. Although
asynchronous multiprocessors have now been in existence for several years (the D825 [1],
in fact, dates back to the early 60's), very litlle has been published so far on how to

design parallel algorithms that run efficiently on an asynchronous multiprocessor. Untit

) | ~ CHAPTER

recently, emphasis in the design of parallel algorithms for multiprocessors has been
placed mainly on techniques for recognizing the intrinsic parallelism of existing sequential
algorithms rather than on the direct construction of parallel algorithms. Some of these
techniqués have- actuaily been implemented in a version of the Algol-68 compiler running
on Cm* [28]. Typically, the transformation of a sequential program is accomplished by
identifying independent subtasks within the program and introducing precedence relations
between them; a parallel program then can execute the various subtasks according to the
graph of the relations. However, a parallel program resulting directly from this automatic
transformation requires considerable communication and extensive synchronization to
control the flow of execulion of the various subtasks. This ultimately reduces its

efficiency.

In the domain of numerical analysis, a different approach in designing algorithms for
asynchronous multiprocessors has proved to be more fruitful. Rather than adapting
existing sceq‘uent'lal algorithms, Chazan .and Miranker [11] have presented a class of
iterative methods for the solulion of a linear system of equations which takes into account

the asynchronous nature of multiprocessors.

Essentially initiated by a recent paper by Kung [37], a systematic study is now
under way i’o explore some of the unique issues raised specifically by the design and the
analysis of parallel algorithms for asynchronous multiprocessors. This study certainly
benefits from an extensive research done on a different, but related, area concerning
time -shared processors rather than true multiprocessors. However, results in ihe tatter
area deal mostly with special problems typically encontered in time-sharing or
multiprogramming operating systems, e.g., resource allocation, co-ordination of
independent devices (typically, 1/0 devices), and they address directly the issue of
co-operation of processes without addressing general issues, such as problem
decomposition, involved with the design of multiprocessor algorithms. (See, for
example, [16] for an early presentation of this area, and [2] for some examples of typical

problems.)

INTRODUCTION 5

In addition to [37], a few examples of typical algorithms for multiprocessors have
already appeared, and they illustrate several important notions unique in their design (61,

[38], [39], [40] and in their analysis [3], [4], [8], [B1].

This thesis is concerned specifically with the design and the analysis of parallel
algorithms for asynchronous muttiprocessors. In Section 2 of this chapter, we briefly
discuss the main issues involved in their designs. The remaining c:habters of the thesis
study these issues in depth in several problem domains. These results are summarized in

Section 3 of this chapter.

2 - The design of algorithms for asynchronous multiprocessors

Algorithms for SIMD machines and algorithms for asynchronous multiprocessors are
similar in principle, in that they both rely on the decomposition of a problem into subtasks
execuled in parallel, Thié is, however, their only similarity, and these two types of
‘parallel algorithms in general present drastic differences with respect to both their design
and their analysis. lLet us examine, in this section, some of the unique issues raised by

parallel algorithms for asynchronous muttiprocessors.

Most of the problems associated with the design of parallel algorithms for
asynhchronous multiprocessors have been clearly exposed by Kung [37]. Throughout the
thesis, we use the notions and concepts introduced in his paper, and, below, we briefly
review some of the more important ones. In particular, [37, p. 156]: |

"We define a parallel algorithm for multiprocessors as a collection of

concurrent processes that may operate simultaneously for solving a

given problem."
It is important to distinguish between the notion of process, which corresponds to the
execution of a procedure or a piece of program, and the notion of processor, the physical
entity which carries out the execution of a process. While we have control over the

processes in the design of a parallel algorithm, we do not usually have control over the

processors, which are administered by the operating system. In particular, the same

6 CHAPTER 1

process is not necessarily executed by only one processor during its entire lifetime, and,
upon decisions of the operating system, éeveral processors might be assigned successively
to its execution. As an immediate consequence, the time required for the execution of a
process on an asynchronous multiprocessor can fluctuate in an almost unpredictable way.
There are, in fact, numerous reasons contributing to this unpredictable behavior; we
already mentioned the fact that the different processors of an asynchronous
multiprocessor might have different speeds and that the access to memory .is not
necessarily uniform; several other features of an asynchronous multiprocessor or of its
environment which also contribute to the fluctuations in the execution time of a process

are listed in [37]

Communication is very likely to be required among the processes co-operating in
the solution of a problem.. Kung [37] regards a process as a sequence of stages defined
between two consecutive interaction points at which the process communicates with other
processes. Parallel algorithms for multiproceséora are then classified according to the
way in which communication is accomplished. In a synchronized parallel algorithm (or,
simply, a synchronized algorithm) processes explicitly use synchronization primitives, and,
upon complelion of a stage, a process may have to wait for the results of other processes
before resuming its execulion; a producer-consumer type of program is a typical example
of a synchronized algorithm. In an asynchronous parallel algorithm (or, simply, an
asynchronous algorithm) the processes communicate among themselves only through the
use of global variables (possibly updated within a critical section), and, at the completion
of a stage, a process either lerminates or proceeds further, without any delay, according
to the current contents of the global variables. Examples of asynchronous algorithms are

presented in the following chapters.

Let us now address briefly (and informally) the issues of correctness and of
efficiency, both of which we feel should always be dealt with in the design of any

algorithms. These issues are not the only ones which should be taken into account, but, in

INTRODUCTION 7

the case of parallel algorithms for asynchronous multiprocessors, these two issues become
parlicularly interesting and important because of the a priori unpredictable behavior in
the execution of these algorithms. For this very reason, however, we can anticipate that
proving the correctness and analyzing the efficiency of an algorithm for multiprocessor

are, in general, difficult tasks.

2.1 - Correctness

Correctness is obviously a requirement for any algorithm. Considerable research
has been done on the proof of correctness of sequential programs, and a detailed
treatment of some of the techniques available can be found, for example, in Dijkstra’s
recent text [17]. These techniques, however, are mostly applicable to sequential programs
with a simple structure (with no complicated data structures, for instance), and their
generalization to parallel programs (especially asynchronous parallel programs) is still

quite limited.

An early paper by Dijkstra [16] contains the first major statement on the proof of
correctness of parallel programs. Research in this area has been restricted mostly to
prmﬂng the correctness of the solutions of small problems, which could be used for the
implementation of some mechanisms in larger parallel programs (e. g., the readers and
writers problem [13], or the producer-consumer scheme [26]). Several attempts have
been made only very recently to extend some of the techniques to the proof of

correctness of complete and more complex parallel programs [47], [20].

Despite the lack of a formalv theory, we still feel that we have given with every
algorithm presented in this thesis a convincing argument that it performs corr.ec.tty. This
proof of correctness can take on very different aspects. In Chapter II, for example, we give
a proof of the correctness ;)f a parallel program by verifying that global variables .used in
the program satisty some property which holds during the entire execution of the program;

this is achieved by checking the possible transitions of the global variables before and

8 CHAPTER |

after interaction points. In some respect, the proof resembles more, in this case, the
formal proof of a sequential program using assertions and invariants; this is partly due to
the simple structure of the particular parallel program we are dealing with. In Chapter 111,
on the other hand, the proof of the correctness (and of the termination) of the algorithm
follows: directly from the theorem of convergence which is derived through techniques of

. numerical analysis.

2.2 - Efficiency

In the design of any algorithm, efficiency is always an important issue. Since one of
the primary goals in the design of a parallel algorithm is to achieve better efficiency than
with a sequential algorithm, this issue must be considered very seriously in the case of an

algorithm for asynchronous multiprocessor.

We would like to itlustrate below that, because of the fluctuations in the execution
times on an asynchronous multiprocessor, synchronized algorithms witl generaily éhow a
very poor performance. This is true for several reasons. The execution time of the
synchronization primitives themselves is often very time consuming (a typical execution
time for these primitives is usually on the order of a couple of hundreds of additions).
Also, and most importantly, the use of synchronization implies the blocking of the
processes co-operating in a task, and, in turn, either causes some of the processors to be
idle or entails the switching of contexts. In both cases, the use of synchronization may
reduce the parallelism and decrease the speed-up that we hope to achieve by using an

asynchronous multiprocessor.

To illustrate this point, let us consider Jacobi's method to solve the linear system of
equations given by:
::. = Ax + b,
where Ais an 'nxn—matrix, and b and % are n-vectors. Let "b be an initial approximation to
the solution of this system, Jacobi's method consists of computing the sequence of iterates

%y for i = 1, 2, ..., through the recurrence:

INTRODUCTION 9

X

i Art*l + b.

This method is well suited for parallel computation since, at each step of the iteration, the
computations of all components can be carried out in parallel. For example, assuming that
n processors are available, a natural way to deco}npose the computation of a new iterate
is to assign to each of the n processors the computation of one of the n components of the
iterate. This implementation requires, however, that at the end of each s‘tep all processes
be synchronized before they can start the computation of the next iterate. In case all
processes take exactly the same amount of time to compute a component, the overhead
introduced by the synchronization is reduced to the execution time of the synchronization
primitives themselves. However, it follows from the discussion at the beginning of the
section that it is more realistic to assume that the time taken by a process to compute a
component is a random variable rather than a constant. In this case the time it takes to
compute the whole set of components of a new iterate is given by the maximum of n
randoms variables. In parlicular, to give an idea, assume that the time for the c:ompl..ltatlon
of any component is distributed according to the same exponential distribution with mean
z, then, sairﬁple calcutus shows that the mean computing time for obtaining a new iterate is
given by Hn.t:, where H, =1 + é-'r v % is the n-th harmonic number. The coefficient Hn

represents the penalty imposed by the synchronization.

This simple example shows _that the apparent parallelism in Jacobi’s method for
solving linear systems of equations is considerably reduced by the fact that this method
implicitly Iréqulres synchronization at each step of the computation. In fact, it can be
shown that the proportion of time wasted by the processes (while they are idle, waiting

for the completion of the last computation) is given by:

’LH1>+H2+"'+"I[1-—IV= 1—_1_ o]-...1._
n Hp, H,
and tends to 1 as n tends to infinity, which means that the processes are almost always idle

waiting for each other!

This example also shows that, when programming an asynchronous multiprocessor,

10 CHAPTER 1

the problem of the fluctuations in the execulion times requires much attention, and that
synchronization should be used very carefully. In parlicular, the design of parallel
programs for asynchronous multiprocessors should take into account the fact that the
various processors execute their programs independently and possibly at very different
speeds, and that, therefore, communication among the processes co-operating in a taék

should be reduced to a strict minimum,

3 - Thesis overview

This thesis explores the issues raised by the desigh and the analysis of parallel
algqr'\thms for asynchronous multiprocessors. The various notions and concepts involved
with these algorithms are illustrated by considering very diverse problem areas for
numerical as well as non-numerical applications. The thesis demonstrates, in particular,
that asynchronous multiprocessors can be used very effectively in different problem
domains, provided that appropriate algorithms are used. The thesis also illustrates
various techniques useful in the analysis of such algorithms. The remaining chapters are

briefly summarized below.

We have just shown, in Section 2.2>. that the fluctuations in the execution times of
programs that are run on an asynchronous multiprocessor could cause a very important
degradation in the performance of synchronized algorithms, even for a problem which is, a
priori, well suited for parallel implementation. “In Chapter II, we show that we have the
reverse phenomenon with asynchronous algorithms, even for a purely sequential problem.
Namely, given a sequence of tasks to be performed serially, we propose an asynchronous
algorithm to accelerate the execution of the tasks on an asynchronous multiprocessor
without introducing parallelism within the tasks but only by taking advantage of
fluctuations in the exccution times. We give a parallel program requiring no critical

section to implement the algorithm, and we prove its correctness. We also give a

spacewise more efficient implementation, which requires the use of critical sections. We

INTRODUCTION | 11

then present an analysis for both implementations to estimate the speed-up achievable
‘with the barallel algorithm, and we show‘ that, when the execution times are exponentially
distributed and no critical section is used, the algorithm with & processes yields a

speed-up of order vk.’

In Chapter liI, we introduce the class of asynchronous iterative methods for solving a
(linear or non-linear) system of equations. We identify existing iterative methods in terms
of asynchronous iterations, and we propose new schemes corresponding to a purely
asynchronous algorithm (with no synchronization between the co-operating processes).
We give a sufficient condition (satisfied in most practical applications) to guarantee the
convergence of any asynchronous iterations and extend the results tor “jt%.\c'llijde
asynchronous iterative methods with memory. We then evaluate asynch‘ronous iterative
methods from a computational point of view; we derive bounds for the efficiency and

briefly compare the bounds with experimental results (see Chapter V).

Chapter 1V deals with the o~ pruning agorithm. In the first part of Chapter 1V, we
énalyze the sequential «-R pruning algorithm, using the number of terminal nodes
examined by the algoritl‘wm as the cost measure. The analysis takes into account both
shallow and deep cut-offs, and we also consider the possibility of ties between terminal
positions: specifically, we assume that all bottom values are independent identically
distributed random variables drawn from a discrete probability distribution. We show that
the worst case of the algorithm can be achieved even whén only two distinct values are
assigned to the terminal nodes, and we deduce that the branching factor of the
oA pruning algorithm in a uniform game tree of degree n grows with n as O(n/ln n),

therefore confirming a claim by Knuth and Moore [35] that deep cut-offs only have a

second order effect on the behavior of the algorithm.

In the second part of Chapter IV, we propose a parallel implementation of the
o~ pruning algorithm requiring very little communication between the processes. In the

parallel scheme, the processes work independently by searching for the solution of the

12 ' CHAPTER 1

‘game tree over disjoint subintérvals. We develop an analysis of the parallel algorithm,
from which it follows that the parallel implementation with k processes shows an
improvement over the sequential a-@ pruning algorithm by a factor targer than k for k = 2
or 3. This leads to the rather surprising discovery that the sequential «-f prun'mg

algorithm is not optimal.

In Chapter V, we present the results of meas@mments performed by running several
asynchronous iterations (introduced in Chapter lI) on C.mmp [63], an asynchronous
multiprocessor at Carnegie-Mellon University. These experiments have proved to bé an
invaluable tool for providing us with some insight into the behavior of parallel algorithms,
and, in particular, they constitute a clear illustration of the advantage of purely

asynchronous algorithms over synchronized algorithms.

In Chapter VI, we show how the classical tools of quéueing theory can be applied to
the analysis of the bcrformance of parallel algo}ithms for asynchronous multiprocessors,
.and, in part:icular, we develop a simple queueing model to account for the behavior of a
~ parallel program which uses critical sections. We then compare the analytical results
derived from the model with the experimental resulls presented in Chapter V, and the

comparison shows an excellent agreement.

In the last chapter, we summarize the principal results of the thesis, mention some
possible extensions and give some concluding remarks. We also present some topics for

future research.

Chapter Il

Parallel Execution of a Sequence of Tasks

on an Asynchronous Multiprocessor

1 - Introduction

We are interested in the deslén and analysis of parallel algorithms for asycw;hronous
multiprocessors such as C.mmp [63] or Cm* [59]. For any given task, the task execution
time oﬁ such a system is dependent upon the properties of the operating sys'tem, effects
of other users, processor»ﬁwcmory intererence, and many other factors. As a result, it is
necessary to assume that task execulion times are random variables rather than conétants.
(See Chapter V for experimental results supporting this assumption.) In this chapter we
propose a novel way of using asynchronous multiprocessors, which takes advantage of
fluctuations in task execution times. We will present our result as a solution to the
problem of executing a sequence of n tasks wy, .., w, under the following conditions:

Cl. For i =2, .., n, task w; cannot be starled before the completion of task w;_;
(i. e., the tasks are linearly ordered). '

C2. For i =1, .., n, no parallelism can be utilized in the execution of task w; ('L.} e.,
we are not allowed to decompose a task).

C3. The execution time of a task is a random variable rather than a constant.

(This condition corresponds lo the asynchronous nature of the multiprocessor.)

We will view a parallel algorithm for asynchronous multiprocessors as a collection

of asynchronous processes which communicate among each other through the use of global

13

14 | . | CHAPTER Ii

variables. Such an algorithm will be defined by giving the procedure each of its
processes executes when assigned lo a processor. While analyzing the algorithm, we will
always assume that a processor is available for any of the runnable processes of the

algorithm. (See Kung [37] for a general discussion of asynchronous parallel algorithms.)

In Section 2 we give an algorithm which uses k » I asynchronous processes to solve
the problem. The algorithm is interesting because at most one process is doing useful
work at any given time. Nevertheless, by taking advantage of condition C3, the mean

execution time is less for k > 1 than for k = [, i. e., a speed-up is achieved.

As an example, consider the computation of ¢, .., z, defined by
2 = Py %),
where zg, %_y, .., %_q are given and ¢ is some iteration function. Let w;,, be the task of
computing ¢ (x,..,x;_4). Our algorithm could be used to execute tasks wy, .., w, which ts

equivalent to evaluating z, .., x,,

’

The speed-up ratio Sy(n) of a parallel algorithm using k processes is defined in
Section 3, and some preliminary results are proved there. In Section 4 we give programs
to implement our algorithm both with and without critical sections and prove informally
their correctness. In Section 5 we consider the implementation without critical sections,
and obtain an analylic expression for the speed-up under certain assumplions (Al and A2
of Section 5). For large n and k, our result is §y(n) ~ Y2k/x. In Section 6 we consider the
implementation which uses critical sections. Here the analysis is more difficult, and we
can obtain analytic results only for k < 2. Some conclusions and open problems are stated

in Section 7.

2 - The algorithm

For each positive integer k, we define an algorithm with k processes for executing
tasks wy, ..., w, under conditions Cl and C2 stated in the preceding section. The algorithm

is specified as follows: :

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 15

Whenever a process, P, is ready to execute a task,
(i) if no task has yet been completed by any process, process P starts executing
task w, |
(ii) otherwise, if the last task w, has not yet been completed by any process,
process P starts executing a task which is unfinished and ready for execution.
For simplicity, we will assume that no two tasks are completed at the same time. Then,
due to the linear ordering of the tasks, condition (ii) defines without ambiguity a unique

task to be executed by process P.

Let ty, t), t3, .. with t; <t .4 be the times of task completion by the processes. The
.diagram of Figure 2.1 illustrates a possible scheduling of the tasks when they are

executed by the algorithm with three processes.

wy wp Wy wy Wq wg

Py H—— } ' } } +
ty 12 '6 t1o . s
| wl lw3l !U4 ' w5 w6 w8
P2 I T T U u }
ty 15 ty tyy t1q
w w; wg wg wy wé
Py } } } } }
ts tg 1o ty2 t43

Figure 2.1 - A possible task scheduling with three processes

Note that, when process Py finishes task w3 at time tg, process Pj has already completed
task wy Thus, after Py completes wy, it starts executing wg rather than w,. Task wy is
skipped by F3. Similarly, tasks wg and w; are skipped by P, and tasks w, and w;, by P,.
After any one of the three processes has executed six tasks, tasks w through wg rather

than tasks w; through wg are completed. A speed-up has been achieved!

Observe that at any given time at most one process is doing work useful for later
computation. With respect to the scheduling given by Figure 2.1, the time intervals on

which processes are doing useful computations are indicated in Figure 2.2.

16 CHAPTER 11

wy Wy
Py
ty &

. w3 Wy
P 1 1 1
2 1 T T

t4 t5 t7

. w5 w6 W7
Ps e — —t ...
tg to t12 13

Figure 2.2 - Time intervals on which processes are doing useful work

Thus the speed-up is not achieved by sharing work among the processes, but is

achieved by taking advantage of fluctuations in the execution times.

3 - A speed-up measure

Consider the algorithm with k processes as specified in the preceding section. The
algorithm is said to be the sequential algorithm if k = 1 and to be a parallel algorithm if
k > 1. Let Ty (n) be the time to execute tasks wy, ..., w, by the algorithm with k processes.
Let Tk(n) be the mean of the Fandom variable T, (n). We define the speed-up ratio ot vthe
algorithm with k processes to be

Spln) = Tyn) / Tyn).

For each k and for each execution of the algorithm with k processes, we define Ski
“to be fhe time of the first complelion of task w;, and define sy o = 0. For example, with .

v réspect to the scheduling of Figure 2.1, with k = 3, we have:
$3,0 = t1» $32 = t2, %833 = 5, 534 = t7,

$3,5 = tos $36 = ty2s $37 = hy3. -

The follow"mg theorem describes the relation between {“k,t} and {t;} in terms of the
scheduling of the tasks. This theorem is important in Sections 5 and 6 for computing

speed-up ratios.

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 17

Theorem 3.1:

Suppose that Ski = tr with 1 <é<n-1. Then Sk,iel = trej for some < j<sk if
and only .if
(a) the j processes completing tasks at times t, t,..q, .. tpyj-g are all distinct, and
(b) the process completing task w;,, at time tpe j is one of the ;j processes
mentioned in (a).
Proof:
We will only prove the necessary condition since the proof for the sufficient

condition is similar.

Suppose that some process P completes two tasks at times t.,, and-t,, . for
0sh<msg j-1. Then, since at time t.,), task w; has already been completed, the task

completed at time ¢t

rem DY process P must be w;, ;. This contradicts thc? fact that w;, is

c.ombleted for the first time at time trs jo since t.,,, < try This proves (a).

Let P be the process compleling task w;, , for the first time, at time trs jo Suppose
that P does not complete any task in the interval [t,, tr+j—1]' Then the task completed by
F at time t,.,

must be started before time t.. But at any time before t,, task w; is not

J i

completed yet. Hence any lask starled before time t, cannot be w;,;. In particular, the

task completed by P at time trej cannot be w;,y- This contradiction proves (b). []

For i=1,.,n, let z,(i) be the random variable representing the quantity

ki~ Ski-1- Then, since Ty(n) = s ., we have
Tyin) = Eg(1) + &) (2) + .+ (R, + - (3.1)
_Equation (3.1) will be used later to compute Tk(n), which is needed for evaluating the

speed-up ratio 5 (n).

4 - Parallel programs for the algorithm and their correctness

We give two programs to implement the algorithm with k processes: one without

critical sections and one with critical sections.

18 CHAPTER 11

4.1 - A.progrnm without critical saections

Program A;

" global inteper (or real) array U{l:n};

global boolean array M{I:in+1};

Initialization:

o

epin

for m:=1 to n+! do M{m]:= false;

start processes Py, .., Pk

end

Process F

begin integer m 5

j!
mj 1= 1
while M[mj] do mj:=m;+ I 4.1)
while mjsn do (4.2)
begin
perform task w,, i (4.3)
)
write the output of task w, on U[mj]; (4.8)
J
M[mj] = true; (4.5)
while M[mj] do mji=m; + 1 (4..6)

end

end

Assume that the tasks are not allowed to alter the array M and integers nij. We will
prove that Program A is correct in the following sense:
Pl. For m = 2, .., n, task w,, is executed only if task w,, g has been finished and
its output has been written on U[m-1].
P2. For j =1, .. k, process Pj can execute the loops at (4.1), (4.2) and (4.6) at

most n times.

PARALLEL EXECUTION OF A SEQUENCE OF TASKS ' 19

P3. ALl the tasks wy, .., w,, will have been completed at the time when any one of

the processes Py, .., P, terminales its execution.

s .

Property P2 guarantees that the program will terminate. (Note that there is no
possibility of deadlocks in the program.) Property Pl ensures that the linear ordering
requirement of the executions of the tasks is maintained, and property P3 implies that

when the program terminates all the tasks are completed.

Lemma 4.1:

(i) For m = {, .., n, if M{m] is set to true, it remains true afierwards.
(ii) After being initialized to false, M[n+1] is never modified.
Proof:
After initialization, M can only be modified through statement (4.5) executed by
some process Pj. But, when entering the main while-loop (starting with statement (4.2)),
m; satisfies the condition m; s n and is not modified before execution of (45). Therefore

J

M[n+1] can never be modified. ' [|

Lemma 4.2:

For j=1,.., k,if m has the value m 2 2, then M[m-1] is true.

Proof:

Suppose that mjl =m with-m > 2 at time ¢t. If m ; was incremented by ! to the value
m inside the while statement (4.1) or (4.6), then the test of M{mj] being true with
m; = m-1 must have been satistied. Honce M{m-1] was true at some time before t. Thus,

by Lemma 4.1, M[m-1] is true at time ¢, [|

Lemma 4.3:

For m = 2, ..., n, if M{m] is true, then M{m-1] is true.
Praoof:
Suppose that M{m] is true. Then M[{m] must have been assigned to true through
instruction (45) by some process Pj with m; having the value m. Therefore, by

J
Lemma 4.2, M{m~1] is true. B

20 ' CHAPTER 1I

Lemma 4.4:

Fo’r m =1, .. n, if M[m] is true, then task w,, is completled and its output is on
U{m].

Proof:

instruction (4.5) by «ome process Pj with m; having the value m. Since Pj executes
instruction (4.5) only after the completion of task w,, —and since m is not modified in
J

between, we conclude that task w,, is completed. a

We are now able to prove the following theorem.

Theorem 4.1:

Program A satisfies properties P1, P2 and P3.

Proof:

Suppose that process Pj is execuling task w, with mr.-mjzz' Then, by

Lemma 4.2, M{m-1] is true, and hence, by Lemma 4.4, task w,,_, is cbmpleled and its

[

output is on U[m-1]. We conclude that Program A satisfies property P1.

Property P2 follows from statement (ii) of Lemma 4.1 since m is incremented by 1!

in each execution of a loop.

Suppose that a process, say process P, terminates. This happens only when

jl
m; = n+1. Thus, by Lemma 4.2, M[n] is true for all m = 1, .., n. Therefore, by Lemma 4.4, .

all tasks are completed. We have shown that Program A also satisfies property P3. n

Program A is very reliable in the following sense. Property P3 implies that, even if
some processes fatl (for reasons external to the algorithm: e. g., crash of the processors
executing the processes), the program may still continue executing tasks and eventually
complete all tasks, provided that there remains.at least one active process. We will not

pursue this reliability issue any further, though we believe it is important,

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 21

4.2 - A program with crifical sections

For problems where we are only interested-in the output of the last task w,, the
use of the global arrays U[I:n] and M[L:n+1] in Program A can be avoided at the expense

of using critical sections.

We will illustrate the idea with the following example. Consider the problem of
generating the n-th ilerate z, by »; := p(x;_;) given the initial iterate x,;. Suppose that
we use Program A. Then, corresponding to the global array (J[I:n], we have the global
array z[0:n] where z[¢(] keeps the value of the i-th iterate, and instructions (4.3) and (4.4)
becore

x[mj] te y'(x[mfl]) .
Note that we only need z[n]. The use of the array x[0:n] is wasteful in space, and might
even be impractical (e.g., when n is large or when the elements x[0], .., z[n] are
themselves vectors or complicated structures). The following program eliminates this

problem. ,
Program B:

plobal integer m; global real x;

Initialization:
begin
m:=1; %:m x4
start processes Py, .., P

end

22 CHAPTER I

Process F‘j:

begin integer m i real Y s

{mj t=my oy =z} (4.7)

while mjsn do

yji= ey

{if mj=m then (m := mj = yj)}; (4.8)
{mj tmmy yjim z} ‘ (4.9)
end

end

It is crucial to assume that the statements enclosed within a pair of curly brackets
(lines (4.‘7), (4.8) and (4.9)) are programmed as critical sections. (As a matter of fact, the
two lines (4.8) and (4.9) can be programmed as one critical section.) With this assumption
it is possible to prove the correctness of the above program. The proof is based on the
observation that the global variable m is a non-decreasing function of time which takes on
all integer values between I and n+1. The proof is relatively easy and hence is omitted

here.

Note that, as was already mentioned, » and y j may represent large amount of data.
Hence the execution of z = yj Or yji= x may take a significant amount of time. After
presenting, in Section 5, an analysis for programs which do not have critical sections, we

will give, in Section 6, an analysis for programs which do have critical sections.

5 - Speed-up ratios: Implementations without critical sections

Let t; j be the random variable representing the time to execute task w; by process
Pj. In this and the next section, we assume that the t; 7 fori=1,.,nand j=1,.,k, are
independent and identically distributed. The assumption is reasonable when all tasks are

of the same complexily and executed by identical processors. We will use T to denote any

of the random variables t; j' and use ¢ to denole the mean of T.
’

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 23

It is easy to obtain T (n). By equation (3.1) with k = 1, we have:
Tl(n) = &‘1(1) + 8’1(2) + ..+ U](n) .
Since, in this case, the ¢ (i) are independent and identically distributed with mean ¢, we
deduce that

Tl(n') = nt. (5.1)

In the rest of the chapter, in order to evaluate 'fk(n), we impose the following
further assumptions:
Af. All processes start at the same time t=0. (e, at tg all the k processes start

with the execution of task w,.)

A2. The random variable T is exponentially distributed with mean .

We observe that by the independence of the t j and by assumption A2 the
quantities zk(li), i=1,.,n, are independent random wvariables. It follows, from
equation (3.1), and assumption A2, that

Ti(n) = €4 (1) + £4(2) + ..+ Ep(n), (5.2)

where ?r'k(t) is the mean of & (i).

In addition, by assumption Al, &, (1) is given by the minimum of k random variables
distributed as T. Since T is exponentially distributed, the minimum has the mean:

g, (1) = i-’ | (5.3)

We now consider z,(i+1) for i = 1, .., n-1. Define the distribution probability Pk, js
j=1,2, .., as follows. (We use here the same notation as in Section 3.) Let Pk, j be ‘the
probability that "k,t;l =ty given that Ski=tr for some r. Hence for j n. 1, ..., k, Pk,j is
the probabllity that conditions (a) and (b) of Theorem 3.1 hold. Using the same argument
as used in the proof of Theorem 3.1, it is easy to show that Pk,j = 0 if j> k. In addition,
assumption A2 implies that, from the memory-less property of the exponential

distribution, "k,)’ is independent of i and r. We have:

24 CHAPTER 11

([teeg - tr with probability Pk,1 »
ey -t (tpeg - trag) with probability py 5,
gpivt) = 4 T T < (5.4)

L (g =t 4 o % (o -t) with probability py .
Since by assumption A2 the random variables t,. . -t r=1,2, .., are independent (and
identically distributed) random variables with mean ‘l‘z, we derive from equation (5.4) that,
for i =1, .., ri'-l, the mean of &,(i+1) is given by:
Foiv1) = 2 (j8)p i = & 2 b, 5.5
K 1574k (5Phj = 5 Sk PP ik (5:5)
- By equations (5.2), (6.3) and (5.5), we obtain that
T = 1 - in. ' 5.6
T(r) = e (1+(n 1)131:“ Jpjk) - (5.6)

To evaluate T, (n), we need to know the following quantity:

N, = 2 jpi-
k Isj:;k"p/"‘

Lemma 5.1:

For j=1, .., k:

!
Pig = ——— (5.7)
N VA L

Proof:

We first observe that, by assumption A2, for r = [, 2, ..., any one of the k processes
is equally likely to complele a task at time t,.. Suppose that Ski = tr and Skivt = trejr
Then, by condition (a) of Theorem 3.1, the j processes completing tasks at time ¢, t,. ¢, -,

tpyj.g Bre different. This occurs with probability

ko, (k=1) o (keirl) oK | 5.8
kY kT Tk Kk ©.8)
Moreover, by condition (b) of Theorem 3.1, the process completing a task at time tr;j must

be one of the j processes mentioned above. This occurs with probability j/k. Hence the
probability that s; ; =t and sy ;g =t ;s

4, K '
k™ kIk- .

The problem of computing the leading terms in the asymptotic series for Ny is

rather difficult. Fortunately, some known results can be used here. Define

- |
O, = 2 .
7Lk gy

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 25

‘We are now able to establish the following.

Lemma 5.2
Ni = Q-
'Proof: ‘
We have
| = T N PR P
N Is%:f;k IPk,j 1<jsk (- (k=10 Pk, j
=k 2 - X (k-jpy
1575k Plod T G P
. > _ik'_ . k!
15 sk kj('k*j)' 1<jsk-1 k-’d(k"j"“!
3 Z ._J.Lf.!_.__ - Z ‘l"’zk'
Isysk phgg-jn 1sisk ghgg-j
- Kk ' .

Isssk - i)
The leading terms in the asymptotic series for Q) are known [34, p. 118]:
- .7:7.7‘: -1, L t.;:' + O(’) .
Ok 2 3 12V k
Hence, by equations (5.1), (5.6) and Lemma 5.2, we have the following theorem.

Theorem 5.1

Using k processes, the speed-up ratio is given by

S,(n) = —tuk
K = DN,

where

N, = [k L L/, oy,
ok *fz 3 12Y 2 k
Asymptotically, when both n and k are large, we oblain:

Spin) ~ J2E ~ 0798 VK .

6 - Speed-up ratios: Implementations with critical sections

In this section, we analyze speed-up ratios achievable by the algorithms when they

are implemented with critical sections.

26 CHAPTER 11

The diagram of Figure 6.1 illustrates a portion of a possible scheduling 6f the tasks

by the parallel algorithm with two proce«ses.

Uy L Wis3 Vi+3 WUisg Vis5 U6
A + VW ELLLLLN o A P A
l.'l 7 ‘VI[//I]/IJ N~ I'l N~ I’I
t; tis3 ti+5 tis6
Wivy Visl W2 Visd Wivyg Visg Wiy
R Yss585588———O iy O Y5555 ——O psss5 .
il tis2 tisq

Figure 6.1 - A possible task scheduling with two processes

In the diagram, the marks ——' and '—o-" indicate the sequences of time instants u; and v;,
i=1,2,.., when a process compleles a task and when the same process completes -the~
subsequent critical section. Since, at any lime, only one process can execute the critical
section, a process may have to wait before entering the critical section. The per.iods of
waiting times are indicated by the marks ‘gs%’. The time instants t; when processes

“actually enter the critical section are indicated by the marks '—a—".

As in the preceding section, we assume that the time a process takes to execute a
task is a random variable independent of the process and of the task. Let F be iis
'distributidn function, and f its density.fun(:t‘lon. Similarly, we assume that the time a
process takes to execute the critical section is a random variable independent of the
‘ process.' Let B be its distribution function and b its density function. Furthermore, let v
and A denote the average execution times for a task and for the critical section,

respectively.

In the following we derive a general formula for evaluating the speed-up ratio
achievable by the parallel algorithm with two processes for the case when F is an

exponential distribution function and B is a general distribution function.

Observe that at time t; when a process enters the critical section, the second

process is necessarily performing some task (possibly just starting a task). Since the

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 27

distribution function F is exponential, at time t; the remaining execution time for the task
performed by the second process is distributed according to the same distribution function
F. Therefore the evolution of the processes, from time t; on, is independent of the past
for any d'tstr'ibution B. In parlicular, the random variables tivg = i for i =1,2, .., are
independent and identically distribuled, and the same holds for the random variables

gplisl), for i =1, 2, .., defined in Section 3.

In this section, lel 7 (n) and Ty(n) denote the time to complete task w, and the
subsequent critical section by the sequential algorithm and the parallel algorithm with two
processes, respectively. let T,(n) and Tz(n) denote their means. It follows from the
above discussion that, for k = 1 and 2, we have:

Tk(n) = Z(1)+2(2)+ ..+ E0n)+ B, ' (6.1)
where the last term, R, accounts for the time to execute the last critical section (after the

completion of task w).

Consider first the sequential algorithm. In this case, we simply have &(1) = ¢, and,

for i = 2, .., n, £(i) = A + . Therefore, by equation (6.1): _ .
Tin) = n(x+f). ‘ (6.2)
(Here we ignore the fact that in the sequential algorithm the critical section can be

shortened, since there is no need to include synchronization primitives.)

Consider now the parallel algorithm. As with equation (5.3), we have:

1) = lv. (6.3)

For j =1 and 2, let Pj be the probability that sp;, = tps jo given that $2 = tr for

some r. As in Section 5, by Theorem 3.1, we obtain, for i = 1, .., n-{,

treg ~ t, with probability py,
zo(i+l) = (6.4)

(tpyg - tp) + (e - ty) with probability p,,
We have already mentioned that the random variables t. . -t r =1, 2, .., are independent
‘and identically distributed. Let g denote their mean. It follows from equation (6.4) that

the mean of & ,(i+1) is given by:

28 : » CHAPTER 11

Ez(lf".” = y.pl "‘2}1.[)2 = (2"[01,).}1, (65)

since py + py = 1.
The following lemma establishes the values of u and p;.

Lemma 6.1:

Let B* denote the Laplace transform of the distribution function B. We have: '
wo=fe X B* L), (6.6)
pr - LB -

Proof: .
We consider transitions for passing from time ¢, to time t, ;. Up to a permutation of

the processes, there are three possible transitions as defined by the following diagrams:

t; tisg t; t;
DO O Hr—o0
AI: A‘?: Aa:
—_— —b —
tivg tieg

where the notation of Figure 6.1 is assumed.

Let Hj('t), J = 1,2, and 3, be the probability'lhat transttion Aj takes place and that

Sttt st We have:

Hyt) = /ﬂt [1 - F(x)) fo" b(y) fix-y) dy dx ,
Hat) =/, " fix) / * biy) [I - Fx-y)] dy dx ,
Hyt) = [blx) F(x) d.

But we observe that H(t) = H(t) + Hy(t) + Hyt) is the distribution function for t;,4 - t; and
that the same process enters the critical section at both times t; and t;sg Only with
transition A;. Hence:

§ = /O“’ t dH(t) = /Om (1 - He)] dt ,

TIVAR ORI AR R f;” by fiz-y) dy dx ,

from which equations (6.6) and (6.7) follow easily. |

By collecting the preceding results, we obtain the following theorem.

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 29

Theorem 6.1:

The speed-up ratio of the parallel algorithm with two processes is given by:

Syn) = n (g + ()
(n-1)[2 - %B*(g,)]w oE BX) + L p
- i < r+ A . O(%) .

2-18%3) peEBYE)

We give below B*(g,) for some distribution functions B.

{l) B is exponential (with parameter 1/8):

BY(}) = zfﬂ'

(i) B is uniform over [a, b]:

~aft _ b/t
B¥l) . €% -e/%
(g) (b-a)/t

(iit) B is the Dirac function at the point £:

B*(é) = Bt

In Figure 6.2, we have plotted the asymptotic speed-up ratio §, as a function of the
ratio oo = z/(z+f3) for the three distributions mentioned above (in the second case, a and b

have been chosen as /2 and 34/2, respectively).

When « tends to 0 (or 2 tends to infinity), the algorithm approaches its worst case
performance, since the evaluations of the two processes tend to be exactly interleaved.
When o = 1 (or B = 0), the critical section is non-existent and we have the results of

Section 5.

We observe from Figure 6.2 that the best speed-up ratio is always obtained when B
is an exponential distribution (the first case). We also note that the results obtained for
the two other cases are very close lo each other and close to the results obtained with
the exponential distribution. This suggests that the results obtained with the exponential

distribution could be used as approximations to results obtained with other distributions.

30 CHAPTER 11

Speed-up ratio

Example (i)
0.8 + Example (ii)
Example (iil)

A e e e e e e = = e e = e = = = = s e = = e = e = = e = e =

-
-~
-
-

4.
L)

0 . 0.2 0.4 0.6 0.8 1.0 1.2
Ratio o

Figure 6.2 - Speed-up ratio with 2 processes for various distributions B

We can observe from Figuré 6.2 that, unlike the implementation without critical
section, betler speed-up is not necessarily achieved by using more processes, though we

assume that a processor is always available to each process! More precisely, the figure

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 31

indicales that (when B is an exponential distribution) in order to achieve the best
speed-up when two processors are available, one should create two processes when
o > 0.586, but only one process when o < 0.586. Similar results are useful in practice,
since they can be used to determine the optimal number of processes to create in order to

minimize the overall execution time.

7 - Conclusions and open problems
/

In recent years, research in parallel algorithms has dealt mostly with synchronized
array or vector processors such as the ILLIAC IV or the CDC STAR, and there are very few.
results on the design and analysis of algorithms for asynchronous multiprocessor§. In this
chapter, we have proposed a novel method of using asynchronous multiprocessors which
takes advantage of their asynchronous behavior. We have also presénted analytic
techniques to evaluate the performance of an asynchronous algorithm using the method.
The algorithm is expected to achieve a large speed-up when the fluctuations in the task
execution times are relatively large. Moreover, as noted in Section 4, the algorithm has a
nice reliability property. The same .'tdea may also be used to construct other reliable

algorithms.

For the implementation with critical sections we obtained analytic results for two
processes. The results show that the parallel algorithm using two processes is not
necessarily faster than the sequential algorithm, because of the critical section overheads
associated with the parallel algorithm. This confirms the practical experience that the
speed-up ratio does not necessarily increase as the number of processes increases. It
would be interesting to extend our analylic results for more than two processes. We héve
chosen to deal with a simple problem by imposing the condition that the tasks are linearly
ordered. An interesting extension would be to consider a set of tasks (possibly generated
dynamically) which are ordered by a directed graph (i. e., partially rather than linearly

ordered). Another interesting extension would be to design algorithms where the

32 CHAPTER 1

vexeczution of a task by a process may be interrupted by another process. We expect that
this approach would result in more efficient algorithms, since processes which are not
doing useful work can be interrupted. A careful performance analysis including the
'additlonal. overheads introduced by the interruption mechanism is needed here. This

problem has been addressed in two recent papers by Barak and Downey [3] and [4].

Finally, we note that the results of this chapter are not restricted to multiprocessor
systems. The ideas can be used to solve any problem in Operations Research which

satisfies conditions similar to Cl, C2 and C3.

Chapter III

Asynchronous Iterative Methods

for Multiprocessors'

1 - Introduction

In this chapter we investigate the fixed point problem for an operator F from IR
into itself: we want to find a vector z in IR™ which satisfies the system of equations
represented by

x = F(x). (1.1)

In [11], Chazan and Miranker introduced the chaotic relaxation scheme, a class of
iterative methods for solving equation (1.1) where F is a linear operator gtven‘ by
F(x) = Ax + b. They showed that iterations defined by a chaotic relaxation scheme
converge to the solution of equation (l.1) if aﬁd only if o(]A|) < 1. ('" M is a real
nxn matrix, p(M) denotes its spectral radius and |M| denotes the non—negat'we‘ nxn matrix

obtained by replacing the elements of M by their absolute values.)

In [41] and [43], Miellou generalized the chaotic relaxation scheme to include
non-linear operators and obtained convergence results similar to those of [11] in the case

of contracting operators (see, for example, [46, p. 433)).

In [11], [41] and [43], the motivation of defining chaotic relaxation is to account for

the parallel implementation of iterative methods on a multiprocessor system so as to

1Copyri(:;,l':'(1978, Association for Computing Machinery, Inc., reprinted by permission.
This chapter appeared in Journal of the ACM, Vol. 25, No. 2, April 1978, pp. 226-244.

33

34 CHAPTER 111

'reduce. communication and synchronization between the cooperating processes. This
reduction is obtained by not forcing the processes to follow a predetermined sequence of
computations, but simply by allowing a process, when starting the evaluation of a new
'iterate, to choose dynamicall)} not only the components to be evaluated but also the values

of the previous iterates used in the evaluation,

The chaotic relaxation scheme does not, however, allow for a completely arbitrary
choice of the antecedent values used in the evaluation of an iterate. A restriction is that
there must exist a fized positive integer s such that, in carrying out the evaluation of the
i-th iterate, a process cannot make use of any value of the components of the j-th iterate
if j <i-s. We will show that this condition can be replaced by a more general one, which

still guarantees the convergence of the iteration.

In the next section we introduce the class of asynchronous iterative methods which
relaxes the assumplion mentioned above, and we show that existing iterative methods (and,
in particular, the chaotic relaxation) can be represented as special cases of asynchronous
tterations. Section 3 gives the definition and reviews some properties of contracting
operators. Then the theorem of Section 4 generalizes the sufficient condition on the
convergence of the chaotic relaxation obtained by Chazan and Miranker [11] and by
Miellou [41] and [43]. This result is further extended, in Section 5, to include iterative
methods with memory. In Section 6, we consider the complexity of asynchronous iterative
methods, and we derive bounds on the efficiency. These bounds are then compared with
actual meas(uements of asynchronous iterations. The experimental results, presented in
Section 7, show a considerable advantage for iterations mak'mg no use of synchronization.
Section 8 is devoted to the study of an asynch.ronous iteration showing super-linear
convergence and, through a specific analysis, we give lower bounds on the order of
convergence and on the efficiency. . Possible extensions of the results are discussed in

Section 9, and concluding remarks are presented in the last section.

ASYNCHRONOUS ITERATIVE METHODS | 35

2 =~ The class of asynchronous iterative methods

The following notations will be used throughout the chapter. If x is a vector‘ of R",
‘its components will be denoted by x; i =1, .., n To avoid confusion, a sequence of
vectors of R will be denoted by =(j), j =0, 1, ... If F is an operator of R into itself,
F(x) will also be represented in companents by f;(x) or by fi(x, .., x,), i=1,.,n We

denote by IN the set of all non-negative integers.

2.1 = Dafinition of asynchronous ilerative mothods

The definition of chaotic iteration is originally due to Chazan and Miranker [11], and

the definition we give below for asynchronous iteration is similar to their definition.

Definition 2.1:

Let F be an operator from IR™ to IR™. An asynchronous iteration corresponding
to the operator F and starting with a given vector x(0) is a sequence x(j), j =0, 1, ...,
of vectors of IR™ defined recursively by:

: x,(j-1) if i€,
~ fix 1 (s 4(j)); vy 2 (5, (D)) if i€ Jj ,
where 4 = { JJ- | j=1,2,..} is a sequence of non-emply subsets of {/, .., n} and

A = { (s1(j)y -y sn(j)) | j=1,2,..}is a sequence of elements in N,

In addition, # and 4 are subject to the following conditions:
for eachi =1, ., n
(@) sf(j)sj,j=12 .,
(b) s,(/), considered as a function of j, tends to infinity as j tends to infinity,

(c) i occurs infinitely many often in the sets Jj, Jj=1,2, ..

An asynchronous iteration corresponding to F, starting with 2(0) and defined by

4 and 4 will be denoted by (F,x(0),4,4). []

36 Lo CHAPTER 111

In the definition of chaotic iterations, Chazan and Miranker [11] use the following
condition
(b") there exists a fixed integer s such that j - s,(j)ssfor j=1,2, .. andi =1, .., n,

in lieu of condition (b). Clearly, condition (b’) implies condition (b), and, in this sense,

asynchronous iterations provide a generalization of chaotic relaxations.

An asynchronous iteration (F,x(0),7,4) may be thought of as corresponding to the

following sequence of computations on an asynchronous multiprocessor.

Assume we have a pool of processors available. Let tj, Jj=1,2, .., be an increasing
sequence of time instants. At time tj processor F is idle and is assighed to the evaluation
of the iterate z(j), z(j) differs from x(j-1) by the set of components { z; | i € Jj } and P
starts computing these components using values of components known from previous
iterates, namely the r-th component of the sr(j)--th iterate, for r = 1, .., n. The choice of
the components may be guided by any criterion, and, in particular, a natural criterion is to
pick up the most recently available values of the components. This 5cheme does not
require any synchronization between the processes. At some time t;, later on (k> NP

“will finish its computations and will be assigned to a new evaluation: z(k).

The use of asynchronous iterative methods is obviously not restricted to
multiprocessor systems, and the scheme is also well suited for execution on a network of
computers, in particular, when the communication between elements of the network is not

too expensive as opposed to the computation itself.

We notice that, in the evaluation of an iterate, nothing is imposed on the use of the
values of the previous iterates. The only thing required, by condition (b) of the definition,
is that, evéntually, the values of an early iterate cannot be used any more in further
evaluations, and more and more recent values of the components have to be used instead.
On a multiprocessor, this condition can be satisfied as long as no processor crashes (and

“eventually completes its computation).

ASYNCHRONOUS ITERATIVE METHODS 37

Condition (a) of the definition states the fact that only components of previous
iterates can be used in the evaluation of a new iterate. Condition (c) guarantees that no

component be abandoned forever.

2.2 = Examples and particular cases of asynchronous iterations

Classical iterative methods: point or block Jacobi, Gauss-Seidel, etc., as well as
others introduced more recently: chaotic relaxation scheme [11], periodic chaotic
scheme [18], iteration chaotique & retards [41] and [43), itération chaotiqute

série-parallele [50], can all be seen as particular cases of asynchronous iterations.

For example, the point-Jacobi method defined on the operator F with the initial
approximation x(0) can be represented by the asynchronous iteration (F,x(0),7,4) where .
and 4 are defined by:

Jj={1l,yn}for jet, 2.,

s(f) = j-1 for j=1,2,.. and i=1, . n.

The same point-Jacobi method can equivalently be represented by the asynchronous‘
iteration where 7 and 4 are defined by:
Jj ={1+(j-Imodn)} for j~1,2 .,

) =n | (j-D/n] for j=1,2,.. and i=1, .., n.

Although those two representations correspond to the same point-Jacobi method,
they differ by the ;lmpli,(.'lt information they contain about the decomposition of the
computations. In the first case, all components are evaluated at once and this, presumably,
will be done by one computational process. In the second case, however, each component
is evaluated separately, and up to n processes can be used to perform the evaluations.
Between the two extreme representations of the point-Jacobi method, in terms of
asynchronous iterations, several others can be proposed, each of which can be interpreted
in terms of decomposition into computational processes and in terms of implementation by

concurrent processes.

38 CHAPTER lil

The iterative method proposed by Roberl, Charnay and Musy (iteration chaotique
série-paralléele [50]) can be obtained as a special case of an asynchronous iteration in
which s,(j) = j-1 (for all i=1,.,n and j=1,2,.) This corresponds to a strictly
sequential computation of sets of components. The choice of the components within a set
is arbitrary and the calculalions of their values can be done simultaneously but the
evaluation of a new set of components cannot be started before all components of the
previoqs set have been compuled and their new values relaxed. The goal of their
‘research was to show that, for example, in the iterative solution of linear systems
resulting from the application of the method of -finite differences to partial differential
equations, it is possible to concentrate the computations more on those points of the grid
‘where the convergence is slower than on other nodes. This is not the case with ordinary
iterative methods for which any component is iterated as many times as any other

component,

Chazan and Miranker [11] have proposed a chaotic relaxation scheme to solve a
linear system. As we have already mentioned, our definition of an asynchronous iterative
method is similar to the definition they give for a chaotic iterative scheme. Our definition,
however, does not require the condition that j-s;(j) has to be uniformly bounded by some
fixed integer, say s, (for all i = 1, .., nand j = 1, 2,..). This assumplion, however, happens
to be satisfied in most usual implementations, with small values for s. It will be useful in
Sections 6 and 7, and we will use this assumption explicitly in order to derive bounds on
the rate of convergence and on the efficiency of various methods implemented on an

asynchronous multiprocessor,

Although all chaotic relaxation methods (as presented in [11],[41] and [43]) can be
identified as asynchronous iterations, the converse is not true as is illustrated by the
following example. let F be an operator from K2 into itself. Assume we have two
processes Py and P, attached to the evaluations of the first and second components,

respectively. To avoid synchronization, the processes always use in an evaluation the

rd

ASYNCHRONOUS ITERATIVE METHODS 39

values of the components currently available at the begining of the computation. If we
assume that it always takes I unil of time for F to perform the evaluation of x; and it
takes k units of time for P, to perform the k-th evaluation of =z, then the quantity
J- sz(j)'grows as vj which is unbounded. This iteration is a legitimate asynchronous

iteration, it is not, however, allowed in the setting of [11], [41] and [43].

3 - Contracting operators

In the next section we shall give a sufficient condition on the operator F for the

convergence of any asynchronous iteration. Needed definitions are given in this section.

3.1 = Lipschitzian and contracting operators

Contracting operators, to be defined below, correspond to P-contractions
in [46, p. 433]. They seem to have been first introduced by Kantorovitch, Vulich and
Pinsker in [31], and they have been further studied by Rabert [49). The notion was used

in particular to obtain the results of [10], [41], [43] and [50].

Dafinition 3.1:

An operator F from IR™ to IR™ is a Lipschitzian operator on a subset D of R if

there exists a non-negative nvn matrix A such that:
IF(x)-F(y)| < Alx-y|, Y2, y(CD, (3.1)
where, if z is a vector of R™ with components zp, =1, .0, |z| denotes the vector

with components |z,|, i = 1, .., n, and the inequality holds for every component.
The matrix A will be called a Lipschitzian matrix for the operator F. []

From this definition we can sée that any Lipschitzian operator is contihuous and, in
fact, uniilormly eoutlnﬁous on D. However, this definition is too broad and, in particular,
we are not guaranteed of the existence and of the uniqueness of a fixed point as is shown
by the following example. Take lhe operator F from R to R defined by F(x) = v x2+a2,

this operator is Lipschitzian on IR because

40 CHAPTER 111

IFxe)-F(y)| = (-l 52402 + ¥ y240aD)]| < |2-y], YV 2,y C R .
However, the equation x = v 224 (corresponding to a = I) has no solution. On the other
hand, the equation x = |x|, (corresponding to a = 0) has an infinity of solutions, and, in

fact, a continuum of solutions.

We will, therefore, restrict ourselves to the following class of operators.

Datinition 3.2:

An operator F from IR™ to K™ is a contracting operator on a subset D of R if. it
is a Lipschitzian operator on D with a Lipschitzian matrix A such that p(A) < 1 (where

p(A) is the spectral radius of A).
The matrix A will be called a contracting matriz for the operator F. []

The fact that, unlike Lipschitzian operators, contracting operators are guaranteed to
have a unique fixed point in the subset D can be easily derived from the definition. In
addition, if we assume, for example, that D is closed and that F(D) is a subset of D, we are
also guaranteed of the existence of a fixed point in the subset D. A proof can be found

in [46, pp. 433-434].

3.2 - Examples of contracting operators

Let £ be a linear operator given by. F(x) = Az + b, where A is an nxn matrix and b is
a vector of IR™. We observe that F is a contracting operator if and only if p(]A}) < 1.
Therefore, in the case of linear operators, the notion‘ of contracting operators coincides
with the property stated by Chazan and Miran};er for their convergence result [11], and

their result will appear as a particular case of the theorem of the next section.

We could have considered a more general definition for asynchronous iterative
methods by introducing a relaxation factor @ > 0. This would simply consist of replacing,
in equations (2.1), the operator F by the operator Foo = oF + (1-0)E, where E is the

tdentity operator of R™. It follows that

ASYNCHRONOUS ITERATIVE METHODS 1]

IF (2)-F (3] s o|F(x)-F(y)| + |1-a]|x-y],
“and, if F is a contracting operator with a contracting matrix A, F,, is a Lipschitzian
operator with the Lipschitzian matrix A, = ©A ¢+ |1-o|l. The matrix A being non-negative
we have p(A) = wp(A) + |1-w], and, if we choose

0<w<2/IpA], 3.2)
F., is also a contracting operator. In parlicular, as long as condition (3.2) is satlsfied, the
results of the néxt section also apply to asynchronous iterative methods with relaxation,

Condition (3.2) is classical and is mentioned, in particular, in [11, p. 221], [43,' p. 62],
and [50, p. 31].

If we consider a linear system of equations derived from a tinear elliptic différential
equation by the method of finite differences, we note that the system is represented by
Ax = b, where b is a vector of IR™ obtained from the boundary conditions and A is an
nxn M-matrix (see, for example, [62, p. 85]). Therefore the system can be written into the
form of equation (1.1) in which F s the contracting operator given by
F(x) = (I-D 1Ay + D”Ib, where D is the matrix composed of the diagonal elements of A.
This example shows, in the case of linear operators, the importance of contracting

operators.

On the other hand, non-linear contracting operatdrs, too, constitute a very important
class. A first example is directly derived from the previous one. Elliptic partial
differential equations, obtained by the addition of a small non-linear perturbation to a
linear partial differential equation, can also be shown to give rise to (non—lineér)

contracting operators.

More important, if G is a non-linear operator from IR™ into itself with tﬁe simple
root ¥, superlinear iterative methods have been devised to find the root ¥ of G, provided
that an initial approximation 2(0) sufficiently close to § is already known. For example,
Newton iterative method generates the sequence of iterates

2(i+1) = F(x(i) = 2G) - [G'(xGN]1C(x@), tor i=0,1, ..,

42 CHAPTER 11

which converges quadratically to the root ¥ of G. In this particular example, we can easily
derive, under usual assumbtions (for example, G’ satisfies some Lipschitz condition in a

neighborhood of ¥), thal the Newlon operator. F corresponding to G is a contracting

operator. (This result will be derived in a more general context in Section 8.)

In fact this result is very general. Let F be an operator from IR" into itself with a
fixed point ¥. If we assume that F is continuously differentiable in the set
D, = { x| llx-¥ll <r} and that the derivative " vanishes at ¥ and satisfies a Lipschitz
condition

WFCe)-F |l < Milx-yll , Y 2,5CD,,
then it can be easily shown that

F(e)-F(y)ll < 2Mrilx-yll , ¥V 2, y C D,..
Therefore, by choosing the vector norm Ilsill = eyl + .+ |x,| (which only changes the
constant M), the operator F is certainly a Lipschitzian operator with the Lipschitzian
“matrix A = [aU] where ajj = 2Mr, for i, j = 1, .., n. In particular, if we know a sufficiently
close approximation to the fixed point ¥ (i. e, if r is small enough), the operator F is also
a contracting operator. This shows that the class of contracting operators contains, under
.weak conditions, all iterative functions occurring in the classical superlinear tterative

methods.

4 - Convergénce theorem

Before stating a sufficient condition ensuring the convergence of an asynchronous
iteration, we give a characterization of a non-negative matrix with spectral radius less
“than unity. The result is classical and an algebraic proof of this characterization can be
found in [11, p. 218). A shorter proof, based on the continuity of the spectral radius of a

matrix as a function of its coefficients, s given below.

Lemma 4.1:

LLet A be a non-negative square matrix. Then p(A) < I if and only if there exists

a positive scalar « and a positive vector v such that:

ASYNCHRONOUS ITERATIVE METHODS 43

Avsov and @< !. (4.1)

’

Proof:
We first assume that (4.1) holds. In this case we note that llAllu g < 1, where the
matrix norm I.I.Ilu is induced by the vector norm defined by:
flzll, = max{ |x;l/v; | éi=1, ., n}.

Therefore the matrix A is convergent which implies p(A) < I (see, for example, [62, p. 13)).

Now assume that p(A) < 1. Let t be a non-negative scalar and A, be the matrix
obtained by adding t to all null coefficients of A Clearly, for any positive vector x, we
have Ax < Ajx. On the other hand, p(A,) is a cdnt'mumis function of t. In particular, since
Ag = A and p(A) < 1, we can always choose t > 0 small enough so that p(A)) < I (in fact, we '
also have p(A) < p(A)). Then let o = p(A). As A, >0, from Perron’s theorem (see, for
example, [62, p. 30]), there exists a positive ‘eigenvector v correspondingv to the
eigenvalue . The positive scalar o and the positive vector v verify Av < Ay = ov with

« < 1. And this completes the proof. _ [|

This proof shows, in particular, that © 2 p(A). But, we also see easily that the

positive scalar « can be chosen arbitrarily close to p(A).

We are now able to stale a sufficient condition on the operator F‘ for the
convergence of any asynchronous iteration corresponding to F. Similar results were first
established for chaotic iterations, i. e., under condition (b"), by Chazan and Miranker [11]
in the case of linear operators, and by Miellou [41] and [43] in the case of contracting

operators. The proof given here follows the same idea as in [11, pp. 217-218].

Theorem 4.1:

If Fis a contracting operator on a closed subset D of IR™ and if F(D) is a subset
of D, then any asynchronous iteration (F,x(0),7,4) corresponding to F and starting with

a vector x(0) in D converges to the unique fixed point of F in D.

44 ' : CHAPTER i1

Praof:

Let ¥ be the unique fixed point of F. By considering the operator F(z+¥)-¥, we may
assume, without loss of generality, that ¥ ~ F(¥) = 0. By setting y = ¥ in equation (3.1),
the Lipschitz condition on the operator F gives: o

[Fx) s Alx|, Y2€D.

Let A be a contracting matrix for £ and let w and v be as defined in Lemma 4.1,
Since v is a positive vector, for any starting vector 2(0) we can find a positive scalar o

such that |x(0)| s aw.

We will show that we can construct a sequence of indices jp, p=01,.., such that
the sequence of iterates of (F,x(0),7,4) satisfies:
x(j)| s woPy for j» Jp- (4.2)

As 0 < « < I, this shows that x(j) » 0 as j » o and this will prove the theorem.

We first show that inequality (4.2) holds for p = 0 if we choose jj = 0. That is, for
Jj=20we have:

|2()] s aev . ' (4.3)

From the choice of w, inequality (4.3) is true for j = 0. Assume, for indudion, that it
is true for 0x< j<k and consider x(k). Let z denote the vector with components
z; = x,(s;(k)), for i = 1, ., n. From Definilion 2.1, the components of x(k) are given either

by x;(k) = xi(k-1) if i € Jy, in which case |x;(k)| = |x;(k-1)| s vy, or by z,(k) = f,(z) if

i
i € Ji- In this latter case, we note that, as sL(k) < k (condition (a) of Definition 2.1), we
have:

IF(z}] < Alz| s @A € cvoow
and in particular:

lx (k)| = |f (2] < wow; . “
As 0 <@ < 1, in this case too we obtain |z;(k)| s av; and (4.3) is proved by induction,

which shows that (4.2) is true for p = 0 if we choose Jo = 0.

ASYNCHRONOUS ITERATIVE METHODS 45

Now assume that jp has been found and that inequality (4.2) holds for 0 < p <g. We

want to find Iq and show that (4.2) also holds for p = q.

First define r by
r=minf k| VY jxk sé(j)zjq‘_f, for i=1,..,n}.
We see, from condition (b) of Definition 2.1, that this number exists, and we note that, from

condition (a), we have r > jq—! which shows, in particular, that |x(r)] < wwd 1y,

fhen take j » r and consider the components of x(j). As above, let z be the vector

with components z; = x,(s;(j)). From the choice of r, we have s,(j) 2 jq—l' for i = 1, ..., n,
and this shows that |z] < wvod ly. In particular, using the contracting property of the
‘operator F we obtain:

IF(z)| < Alz] s wvod 1Ay < waolv .
This inequality shows that, if i € _Jj, xz,(j) satisfies:

le (D] = ()] < vy, .
On the other hand, if i € Jj the i-th component is not modified. Therefore, as soon as the
i-th component is updated between the r-th and the j-th iteration we have:

|2, ()] s woy; . . (4.9)

Now, define jq as:

Jg=min{ j|j2r and {f, cyn}=J . U..U Jj }

(this number exists by condition (¢) of Definition 2.1), then for any j > jq every component
is updated at least once between the r-th and the j-th iteration and therefore inequality
(4.4) holds for i = 1, .., n. This shows that inequality (4.2) holds for p = g and this proves

the theorem,. [|

Considering only the class of linear operators, F(x) = Az + b, Chazan and
Miranker [11] have established a stronger result, namely, that the condition p(]A]) < 1 is

also a necessary condition for the convergence of chaotic iterations.

16 CHAPTER 111

5 - The class of asynchronous iterative methods with memory

The idea behind the definition of asynchronous iterations, as presented in Section 2,
ts to allow, in the evaluation of F(x), different (and independent) processes .to compute
different subsets of the components. This corresponds to a natural decomposition for the
evaluation of F(x) when the operator F is known explicitly by the set of functions
fi» - £ This is not, however, always so. For example, if F is the Newton operator
corresponding to a non-linear operator G, i.e.: F(x) = x - [G'(x)]'IG(r.), usually only the
operator G is given and lhe operator F is not known explicitly. In thié particular case,
when two brocessors are available, a more natural decomposition, as proposed by Kung
in [37], is to have one process computing the value of G’ while the other process uses this
value for the evaluation of F. More precisely, if » and y are two global variables
containing the current values of the iterate and of the reciprocal of the derivative of G,

respectively, the two processes correspond to the two following programs.

Process 1: while (termination criterion not satisfied)

do x = x - yxG(x).

Process 2: while (termination criterion not satisfied)

do y := [C'(:r-)]"l.

Starting with the initial values x(0) and [C'(-x(O))]"’ for z and y respectively, the
two processes execute their programs asynchronously and use for x and y whatever
~values are currently available when needed. They implicitly define the sequence of
iterates x(j), for j =0, 1, ., thrbugh formulas of tﬁe form:

C2(j) = Hlx(j-Dxtk)], with ks j-1 (5.1)
where
Hiz,y) = % - [C'(y)]1C(x) |
This iteration, however, is not allowed in the setting of Definition 2.1, because, in
equation (5.1), x(j) is defined in terms of two previous iterates. This motivates the need

for a generalization of the class of asynchronous iterative methods.

ASYNCHRONOUS ITERATIVE METHODS 47

5.1 = Asynchronous iterations with memory

A generalization to Definition 2.1 can be obtained by noling that, if, for j = 2, 3, ..,
it happens that kj = j-2 in equation (6.1), this equation defines a sequence of iterates
which corresponds exactly to the sequence generated by an iterative method with one
memory. This remark suggests the following generalization for the problem stated in

equation (1.1).

Given an operator F from [R™]™ into R™, the problem is now to find a vector ¥ in
IR™ such that:

¥ = lim (xl,.x™) . | (5.2)

£
{xl"*f;"'»x,n_’g} .
The vector ¥ will still be called a fixed point for the operator F.

In very much the same way as we introduced the class of asynchronous iterative
melhods to solve equation (1.1), we now introduce the class ot asynchronous iterative

methods with memory to solve equation (5.2).

Definition 5.1

Let F be an operator from [R]™ into R An asynchronous iteration with
memory corresponding to the operator F and starting with a given set of vectors
%(0), ... x(m-1) is a sequence x(j), j=0,1,., of vectors of R" defined for
J = m, m+l, . by: |

{ z,(j-1) if LEJJ-
z,(j) =
fih 2™ iy,
where 27, 1 <r<m, is the vector with components 2l =x(sT(j), 1sis n. As in
Definition 2.1, 7 ={ JI' | j=m, m+f, ..} is a sequence of non-empty subsets of
{1, ..., n} which correspond lo the subsets of components evaluated at each step of the
iteration. But the sequence 4 is now to be replaced by: |
A= LG, s, 81200, ey s, | G o= my mat, LY
a sequence of elements in [IN?]™. In addition, while condition (¢) of Definition 2.1

remains the same, conditions (a) and (b) now become:

48 CHAPTER 111

for each i = 1, .., n
(a) max{ sir(j) |1srsm } < j-1,for j = m, m+l, ..,

(b) min{ & (j) | 1 s r<m}tends to infinity as j tends to infinity.

'An'asynchronous iteration with memory corresponding to F, starting with a set X

of m vectors and defined with 7 and .4 will be denoted by (F,X,7,4). [|

For practical reasons (e. g.‘, stability in the implementation on a computer), we might
want to have the additional condition that the vectors z!, .., 7™ are all distinct. But this
restriction is nol essential for our purpose here if we assume, for example, that the
operator F is defined by continuity when two or more vectors are identical. This will be

the case with the class of operators we will consider.

In order to obtain, for asynchronous iterations with memory, a convergence result
similar to the result stated in Theorem 4.1, we need to generalize the notion of

contracting operators {o operators from [IR*]™ into K.

In the remainder of the section, we will use the following notation. If {x{, ., ™} is
a set of vectors in R™, z = max[x!, .., x™] denoles the vector in R™ with components
zp=max{x" | f<rsm}, i=1,.,n A natural generalization to the notion of

[4

contracting operators is given in the following.

Definition 5.2:

An operator F from [IR"]™ into IR™ is an m-contracting operator on a subset D of
IR™ if there exists a non-negative nvn matrix A with spectral radius less than unity
satisfying, for all x!, ., x™ 41 4™ inD,

IFexd, . 2™ - Fiyl, y™)| < Amax[|z!-y!], .., Ja™-yM] .
The matrix A will be called a contracting matrix for the operator F. . |

When m = 1, the preceding definition corresponds exactly to Definition 3.2, and

m-contracting operators have all the properties we have already mentioned for

ASYNCHRONOUS ITERATIVE METHODS 49

contracting operators. In parlicular, it is clear from the definition that m-contracting
operators are continuous and, in fact, uniformty continuous on D™. The. uniqueness of a
fixed point in D is also easily derived. In addition, if we assume that D is a closed subset
of IR™ such that F(D™) is a subset of D, then we are guaranteed the existence of a fixed
point in D: the fixed point is, for example, obtained as the limit of the sequence x(j),
j=0,1, .., detined by: |

2(j) = Flx(j-1), ..., x(j-m)), j=m, msl, ..,

which is independent of the set of starling vectors x(0), ..., x(m-1) in D,

We are now able to state the analogue of Theorem 4.1 for m-contracting operators

tn the following.

Theaoram 5.1

If F is an m-contracting operator on a closed subset D of R™ such that F(D™) is
a subset of D, then any asynchronous iteration with memory corresponding to the
operator F and starting with an arbitrary set of m vectors in D converges to the
unique fixed point of F in D.
Proof:
Wltl.w slight modifications, the prdof of this theorem is identical to the proof of

Theorem 4.1. n

5.2 = Examples of asynchronous iterations with memory

In the beginning of this section, we considered the Asynchronous Newton's method to
f(ﬁd the simple root ¥ of a non-linear operator G. This method led to the sequence of
iterates generated by the asynchronous iteration with memory (H,{x(0),x(0)},4,4), where:

Jj-—- {1, .., n} for j =23, ..,

sty =ity s =k; for je2,3,. and i=1, ., n.

J

In addition, as the operator H can easily be shown to be a 2-contracting operator

(assuming, for example, some Lipschitz condition for the derivative of G in a small

50 CHAPTER Il

neighborhood of the root ¥), we see that the sequence defined by equation (5.1) converges
to ¥, provided that kj tends to infinity with j (which simply states the fact that the

processes eventually complete each step of their computations).

Let F be an operator from [R"]™ into K™, and let w be a positive scalar. Consider
the operator F, from [R™)™*! into IR" obtainéd from the operator F by the introduction
of the relaxation factor @, and defined as

Fo(r.o, 2l 2™ = (1-e)x0 + oF (2!, ., ™) .
We first note that both I and F , have the same fixed points (if any). We also note that, if
F ts an m-contracting operator on some subset D of R™ with the contracting matrix A,
then, for all 20, x!, . x™, yO 41 y™ in D, the operator F, satisfies:
IF (20, ey 2™ 50, o y™)] < H-0ll20-50) + 0IF (2], .., x™)-F(y!, ..., y™)|
s 1-0)12%50 + wGAmax[|x!-y!|, .., |-y]
s [H-oll + w/l]max[lxo--y”], |x1-~yli, . |2M-y™],
and, provided that 0 < © < 2/[1+p(A)], F , is an (m+1)-contracting operator on D with the
contracting matrix A, = [1~0|] + A This reestablishes, in a more geﬁeral setting, the

result mentioned in Section 3.2 for asynchronous iterative methods with relaxation.

In [42], Miellou introduced a generalization of the idea of iterations chaotiques &
retards for the problem of finding the fixed point of an operator F from [R?]? into IR™. His
generalization is a parlicular case of an asynchronous iteration with memory
corresponding to the operator F (with m = 2). Miellou, in addition, gives convergence ,
results under different assumptions on the operator F (monotony, continuity and existence

of a fixed point).

Many more examples of asynchronous iterations with memory can be given and; in
parficular, all classical iterative method with memory can be expressed in this way. In
addition, all usual super-linear iterative methods with m memories can be shown (under
weak conditions) lo correspond to some (m+1)-contracting operator, therefore ensuring the

convergence of any asynchronous iterations corresponding to this operator.

ASYNCHRONOUS ITERATIVE METHODS 51

6 - On the complexity of asynchronous iterations

Let F be an operator from R? lo itself with a fixed-point ¥ and satisfying the
assumptions of Theorem 4.1. We now investigate some measures of complexity for the

convergence of the asynchronous iteration (F,2(0),7,4) toward the fixed-point ¥ of F.

We will first derive, in Section 6.1, results applicable to asynchronous iterations in
general, then, in Section 6.2, using condition (b') in Definition 2.1, we will derive more

specific results for the parlicular case of chaotic iterations.

The constructive proof of the theorem already provides us with bounds for the error
vector z(j) - ¥. And, in fact, if F is a contracting operator‘ with the contracting matrix A,
we note that an estimate of the error committed with the asynchronous iteration
(F,x(0),7,4) is directly obtainable from the asynchroqous iteration (A,|x(0)-¥|,7,4). This
estimale is used in this section to derive bounds for the complexity of asynchronous
iterations corresponding to contracting operators. However, since (A x(0)-¥|,7,4) can
only reflect’ linear convergence, this estimate is certainly not adequate to deal with all
asynchronous iterations, and, in Section 8, using an example, we present an analysis for an

asynchronous iteration with super-linear convergence.

For convenience, we only consider the convergence in norm of the error vector
x(j) - ¥. By choosing, for example, the norm |lxll = max{ |#;| |éi=1,..,n}, this

corresponds to the worst possible case for the convergence of the components,

To measure the linear convergence of the sequence x(j), j = 0, 1, ..., toward its limit
&, we consider the following complexity measures often referred to in the literature. The
rate of convergence of the sequence (s defined as:
R = lim inf o [(logllx(i)-¥ID//] .
In addition, if ¢ is the cost associated with the evaluations of the first j iterates,

z(1), ..., z(j), we define the complexity of the sequence by:

E = limint i, [(loglla(i)-§ll)/e] -

52 CHAPTER 111

If all logarithms are taken to the base 10, {/R measures the asymptotic number of steps
required to divide the error by a factor of 10, whereas 1/E measures the corresponding
cost. We note that, if cj/j tends to some finile limit ¢ (which corresponds to the average

cost per step), then the complexity is simply given by £ = R/e.

The costs ¢ s j = 1,2, .., can be chosen according to any convenient measure. In our
case, we consider the cost lo correspond either to the number of evaluations of the
operator f, or to the time to perform the evaluations. In the former case, if each
‘component is equally as hard to compute, the cost can be directly evaluated from the
seql’nenc:e J by considering

cj'fﬂ./;l LI Lljl)/n, (6.1)
.where Ujll is. the cardinality of the set Jj, i. e., the number of components evaluated at the
j-th step of the iteration. In the latter case, the cost is betler suited to deal with parallel
algorithms, and can be evaluated through the classical tools of queueing theory. When it
is necessary to indicate which c:ost‘meas;um is used in the evaluation of the complexity,
we use the notations £, Uf the cost is measured in number of evaluations of F, and E, if

the cost is measured by the time needed to perform (sequentially) one evaluation of F.

6.1 - General bounds: asynchronous iterations

We return to the proof of Theorem 4.1, and we use the same notations. The proof

simply consists of constructing an increasing sequence of indices jp, p=0,1,.. satisfying

lx(j) - ¥l s wwP for j2 Ip»
where the positive constant @ can be taken to be o = ||x(0)-¥||l. From the construction of
this sequence we nole that

jp*l = jp trpt tp for p=20,1,..,
where i~ and t, are integers chosen to satisty: (1) starting with the index jp+rp, all
evaluations of iterates do not make any more use of values of components corresponding

to iterates with indices smaller than Jpi and (2) all components are evaluated at least once

between the (jp+rp)--th and the (jp+rp+tp)--th iterates.

ASYNCHRONOUS ITERATIVE METHODS 53

Now let

pj=sup{ plrg tlgt ety g <j} tor j=0,1,... (6.2)

Then, if we know r_ and tp for p = 0, 1, ..., we can deduce a bound on |Jx(j)-¥|| since

p
Nx(i)-¥ll < e’ for j=0,1, ..,
which shows that the sequence x(j), j = 0, 1, .., converges at least as fast as the sequence
copj, Jj = 0,1, .. with a rate of convergence R such that
R > - [lim LN (pj/j)] logw .
And, if c; ts the cost associated wilh the evaluations of the first j iterates, we have the
following bound for the complexity:
E > - [lim nf s (pj/cl-)] loge .
In addition, as was noticed carlier, if Ais a contracting matrix for the operator F, w can be

chosen arbitrarity close to p(A). This shows that in the bounds we have just obtained we

can simply replace o by p(A), and this yields the following.

Theorem 6.1:
lLet F satisfy the condition of Theorem 4.1, and let A be a contracting matrix for
the operator F. Then the asynchronous iteration (F,x(0),7,4) converges to the fixed
point of F with a rate of convergence
R 2 - [lim inf ;s (0 /1)) LogP(A),
and a complexity
Ez-[lim 'mfj,_,(D (pj/cj)] togp(A),

where the sequence Pj is defined from 7 and 4 by equation (6.2).

An example

As an illustration, we consider the parallel implementation of Jacobi’s method with &

processes. For simplicity, we assume thal n is a multiple of k, and we set q = n/k.

To. avoid an overhead in the selection of the components to be updated at each step
of the iteration', each process is assigned to the evaluation of a fixed subset of the

companents. In particular, when all components are equally as hard to compute, and when

54 CHAPTER Il

all processors are equally as fast, it is natural to decompose the set of components into
subsiets of equal sizes, and, for example, to assign the first process to the evaluation of
the f'trsf g components, the second process to the evaluation of the next g components, and
so forth. Corresponding to this decomposition, a parallel implementation of Jacobi’s
method with k processes can be represented by the asynchronous iteration (F,x(0),7#,4),
where 7 and 4 are defined by:

J,~={i| L+ (j-tmodklgsisq+(j~-Imodklg} for j=1,2, ..,

s,;?j) = |(j-D/k)q for j=1,2,.. and i=1,.,n.
The two asynchronous iterations we introduced in Section 2.2 to represent Jacobi's

method correspond to the particular cases k = 1 and k = n.

It is easy to check’that r. and ty, are given by I and k, respectively, for p = 0, I, ...

p
This shows that pj= lj/k} and therefore

R(k) » -(togp(A))/k .
Now, if ¢j measures the number of evaluations of F required to compute the first J

iterates, using equation (6.1), we have cj= J/k. This gives for the complexity:

Eglh) 2 - logp(A) . : ' (6.3)
For all values of k, we obtain the same bound for the complexity. In particular, when F is
the linear operator defined by F(:t.).= Ax + b, where A is a non-negative nxn matrix with
spectral radius less than unity, then A can be chosen as a contracting ma{rlx for F and the

bound (6.3) is known to be sharp.

Since the asynchronous iteration we are considering corresponds to a parallel
implementation of Jacobi's method, instead of measuring the cost by the number of
evaluations of F, it is more natural to use the average time to perform the evaluations as a
measure of the cost. Let the time unit be the average time to perform (sequentially) one
evaluation of F. Then, if pk < j s (p+1)k, we have Cpk S €j S C(paflk and cp) = plxg/k). .
The expression X, /k corresponds to the time for the k processes to execute in parallel

their computations and to synchronize their executions. The factor A is the penalty factor

ASYNCHRONOUS ITERATIVE METHODS 55

introduced by Kung in [37]; it measures the overhead due to the fluctuations in the
‘computing’ times of the k processes, and can be evaluated if we know, for example, the
distribution function for the time to evaluate F. In particular, we have A; = [and, for
k>2 XAp21 ‘wi’lh the equality. only when it always take the same constant time to
evaluate F (i. e., there are no fluctuations in the computing time). This cost measure
yields the following bound for the complexity: |
E (k) > -[k/X) Nogp(A) .

Again, these bounds are sharp for the linear operator we mentioned above, and the ratio
Ei(k)/E(1) = k/X, rﬁeasures the speed-up achieved by using a parallel implementation
with k& processes. We would expect the implementation with k processes to be k times as
efficient as the sequential implementation (with k = 1), but this is not so because of the
overhead introduced by synchronizing the k processes and measured by the penalty

factor)‘k'

6.2 - Additional assumptions: chaotic iterations

In the preceding example, we have been able to carry out the analysis for Jacobi’s
method (and even obtain sharp bounds on the complexity) because the representation in
terms of asynchronous iterations is known explidtly and follows a very regular pattern.
This is not, however, generally so. For example, in a parallel implementation with several
processes using no synchronization (as presented in Section 2.1), the sequences 4 and 7

(and, therefore, the sequences r,_ and tp P 0, 1,..) are not known directly but are only

p

defined implicitly by the processes in the course of their executions.

Below, we present alternate bounds for R and £ under conditions often satisfied in
usuelal implementations of asynchronous iterations. We assume that we know boqnds on rp,
;an(l tps and we restrict the definition of the class of asynchronous iterative methods by
replacing conditions (b) and (c) of Definition 2.1 with the following:

(b’) There exists a positive integer r such that, for j=1,2 .. and i =1, .., n,

Sl'(j) 2 j-r,

56 : CHAPTER 111

(¢) there exists a non-negative integer t such that, for j=1,2, ..

Jj U % l} J = {.’, ey n}.

jt
As was already mentioned, condition (b’) was proposed by Chazan and Miranker in the
definition of the chaotic relaxation scheme [11]. Although the convergence result obtained
under condition (b) of Definition 2.1 is mathematically more satisfactory, condition (b') is
very often satisfied in practical applications, in parlicular, when the computations of all
components have the same complexily (which is the case with a linear operator).
Condition (¢’) is also satisfied for most of the usual implementations of asynchronous
iterations, since it is natural that (1) a process evaluates a component by using the most
recently updated values of all components; and (2) two processes never evaluate the same

component at the same time; in this case it follows directly that, by taking r = t+f,

“conditions (b") and (c') are equivalent.

Under the additional conditions (b’) and (c’), we clearly have rpsr and tp St for
p =01, .., and, therefore, P li/(r+t)]. From the bounds stated in Theorem 6.1, we

‘immediately obtain the following.

Corollary:

Let F satisfy the condition of Theorem 4.1, and let A be a contracting matrix for
F. 1f the asynchronous iteration (F,x(0),7,4) satisfies the additional conditions (b")
and (c’), then it converges to the fixed point of F with a rate of convergence
R > - [1/(r+t)] logp(A),
and a complexity

£:-- [limj_*m j/(f+t)cj] logp(A) .

7 - Experimental results

The results of this section are reported in detail in Chapter V. A very brief
presentation is given below as an immediate illustration of asynchronous iterative

methods.

, ASYNCHRONOUS ITERATIVE METHODS 57

Several asynchronous iterations have been exper;lmented with on C.mmp, the}
Carnegie -Mellon multiprocessor [63], they are described in Section 7.1, and the actual
measurements are presented in Section 7.2, Although asynchronous iterative methods are
applicable to non-linear problems, the experiments reported here deal only with linear

problems. More specific treatments for non-linear problems will be reported elsewhere.

7.1 = Experiments with asynchronous ilerations

All asynchronous iterations we have experimented with consist of the parallel
execution of k processes. As we did with the parallel implementation of Jacobi’s method,
we assigh to each of the proc.esse's the evaluation of a fixed subset of the components.
Each process computes cyclically new values for the components in its subset, and the
methods only differ by the choices of the values used in the evaluations. .

Asynchronous Jacobi's r.nerhocl (Al): For the evaluations of all components, a process
uses only values of the components kriown at the beginning of a cycle, and the
process releases all new values at the end of each cycle.

Asynchronous Gauss-Seidel’s method (AGS): Same as the AJ method except that the
process uses new values of the components in tts subset as soon as they are
known for further evaluations in the same cycle. Again, it releases the new
values (for the other processes) at the end of its cycle.

Purely Asynchronous method (PA): A process computes the new values of each
component by usiﬁg the most recent values of all components and releases each

new value immediately after its evaluation.

The PA method is cerlainly the easiest method to implement, and, as far as space is
concerned, is clearly the most efficient one, whereas the AJ method is the worst one, since
it requllrés from each process not only a complele duplication of all components (as of the
beginning of its cycle) but still another copy of the components in its own subset. This

can hardly be justified but experimental results give useful comparisons between the AlJ

58 CHAPTER 111

method and the actual Jacobi's method (also between the AGS and Gauss-Seidel’s

methods).

In addition, both the AJ and AGS methods also require the need for a critical section
in order to read all components at the beginning of a cycle and to update the values at the
end of a cycle, whereas no critical section is needed with the PA method. However, C.mmp
has the drawback that no indivisible instructions exist to read or write floating point
numbers (implemented on two conseculive words of memory), therefore, if we are to
implement the PA method on C.mmp, only the first 8 bits of the mantissa can be considered
significant, and the admissible error in the termination criterion has to be chosen

accordingly.

7.2 - Results

’

The three methods just described, as well as .Jacobi's method, have been
lmplemented'on C.mmp to solve the Dirichlet problem for Laplace’s equation on a
rectangular domain of IR2. Using the method of finite differences, an approximate solution
to this problem can be found by solving a linear system of equations. In the experiments
reported here, a regular grid has been chosen with 21x24 interior points, resulting in a
linear system of size n =504, This system can be represented in the form
x = F(x) = Az + b, where the vector b is obtained from the boundary conditions, and the
matrix A is a (very sparse) non-negative matrix with spectral radius p(A) = 0.991. Since
p(1A) = p(A) < 1, this shows that A is a contracting matrix for the operator F, and,
therefore, that the result of Theorem 4.1 can be applied to F to ensure the convergence of

each iterative method.

At the time the measurements have been taken, the configuration of C.mmp included
six processors, and all iterative methods have been run with a nuchr of processes
k=12, 3 4,and 6. Each of the results reported here s the average of three
measur-emrmts, but, since C.mmp was used in stand-alone mode during the experiments,

very littte difference was noted from one run to the next.

ASYNCHRONOUS ITERATIVE METHODS 59

In Table 7.1, we report for the four methods the average number of vector
evaluations required to reduce (asymplolically) the error vector by a factor of 10: this
;orrusponds to the cost measure 1/E, And, in Table 7.2, we report the average time
(expressed in seconds) required to achieve this reduction: this corresponds to the cost

mesure I/Et.

The bounds obtained from the results of the prev’(ous sections are mentioned in
parentheses along with the measurements, The.parameters in these bounds have been
4evaluated.e'ither directly (e. g., p(A) = 0.991), or through measurements by tracing the
execulions of the processes. In parlicular, for the AJ, AGS and PA methods, the bounds r
and t, defined in Section 6.2, have been determined by observing the sequencing of the
tasks performed by the different processes. Similarly, the penalty factor in Jacobi’s:
method and the overhead due to the critical section in the Al and AGS methods have been

obtained by direct measurements: they are presented in Tables 7.3 and 7.4.

Jacobt Al AGS PA

254 (254) 254 (254) 127 (254) 127 (254)
254 (254) 206 (888) 142 (888) 127 (762)
254 (254) 267 (840) 149 (846) 127 (762)
254 (254) 273 (825) 166 (825) 129 (762)
254 (254) 285 (804) 196 (804) 128 (762)

I T B B

S WN -~

b ol i

Table 7.1 - Number of evaluations required to divide the error by a factor of 10

Jacobi Al AGS PA
k=1 337 (337) 337 (337) 168 (337) 168 (337)
k =2 241 (241) 211 (705) 113 (705) . 84 (506)
k=3 178 (178) 149 (471) 83 (471) 56 (337)
k =4 153 (153) 123 (372) 75 (372) 43 (253)
k=0 131 (131) 102 (289) 70 (289) 28 (169)

Table 7.2 - Time required to divide the error by a factor of [0

60 CHAPTER 111

Ay ! 143 1.59 1.82 2.34

7 0 29.9 37.1 45.1 57.3

Table 7.3 - Penalty factor with Jacobi's method

and percentage of time wasted

k=1 k =2 k=3 k=4 k=6 .

Al ! 120 | 126 | 135 1.62
/' 0 166 | 208 | 260 | 38.2

Table 7.4 - Critical section overhead cost with the Al and AGS methods

and percentage of time wasted

These results must only he considered to illustrate the behavior of asynchronous
iterations, since, in particutar, the two cost measures reported in Tables 7.1 and 7.2
strongly depend on both the problem (i. e., the matrix A) and the multiprocessor system.

Yet, they show a clear advantage of asynchronous methods over synchronized methods.

We note, for example, from Table 7.3 that, with Jacobi’'s method, when k =6
processes are used, the penally factor is as big as Ag = 2.34. This means that about 57
'percent of the time is spent by a process waiting for the other processes to finish thetr

computations. This limits the possible speed-up to 2.6 rather than 6.

We also note that the use of critical sections, too, should be avoided, since, with the
Al or AGS rhethods. when 0 processes are used, about 38 percent of the time is spent
waiting for entering the critical section, again limiting the possible speed-up to 3.7 rather

than 6.

The measurements for the PA method, on the other hand, indicate that we achieve an
almost full speed-up with this method (at least with a small number of processes). An

obvious reason for this speed-up is the total absence of any form of synchrontzation;

ASYNCHRONOUS ITERATIVE METHODS | 61

another reason, specific to the problem we have experimented with and indicated by the

results of Table 7.1, is due to the sparsity of the matrix A.

The bounds derived in Section 6 have been obtained in a very general case. Yet
Tables 7.1 and 7.2 show that they are always within a factor between 3 and 6 of the actual
measurements (except for Jacobi's method where they are sharp). In addition, we
certainly could obtain much sharper bounds by carrying out the analysis for the specific
problem we have experimented with (for example, by taking into account the sparsity of
the rn:;trix). in particular, a specific analysis for the PA method can easily explain the fact

that 1/£, is almost independent of the number of processes (see Table 7.1).

8 = Asynchronous iterations with super-linear convergence

As we already noticed, the bounds established in Section 6 are certainly not
adequate to measure the complexity of iterations with super-linear convergence. In this
section, we use as an example the iterative method we have mentioned at the beginning of

Section 5 to show how an analysis of the complexity can be done for this case.

To study the convergence of a sequence x(j), j = 0, 1, .., toward its limit ¥, we now
use the following usual measures of c:on*.plbex'\ty. The order of convergence is defined as
p o liminf, [,’~10g||x(j)..§")1//],
and, as before, if ¢ is the cost associated with the evaluations of the first j iterates,
z(1), .., 2(j), we define the complexity of the sequence by:
E = lim 'mfj_*m [(log-logllx(’j)-'fll)/cj] ,
Again, we note that, if the average cost per step cj/j tends to some finite limit ¢ when j

tends to infinity, the complexity is simply given by £ = (logp)/x. In the remainder of the

section, we assume that the limit ¢ exists.

In order to find the simple root ¥ of an operator G from IR" into itself, we use the

Asynchronous Newton's method, AN, as implemented by the two processes described at the

62 CHAPTER 111

beginning of Section . Let rp b= 1,2, .., be the ﬁumber ’of iterates evaluated by the first
.process, P‘I; during the i-th evaluation of the derivative G’ by the second process, P, Let
Jo = 0 and jiA =rptatrytori= 1,2 ., then 2(j), i = 0, 1, .., is the iterate used by Pr
for the (i+1)-st evaluation of the derivative. Starling with the two initial values x(0) and
G’(x(0)), the AN method generales with the two processes Py and P, the sequence of
iterates x(j), j = 1, 2, ..., defined by

x(j+l) = x(4) - [G'(x(jl;_l,‘)]"IC('x(j,’) y for i=1,2,.. and ji<j<j,y. (81)

The following theorem gives the measures of complexity for this sequence if we

know some bounds on the sequence rot=1,2, ..

Thoorem 8.1:

Let the initial approximation x(0) be close enough to the root ¥, that is

20V €D, ={z||l=¥ll<e},
and let the derivative G’ satisfy some Lipschitz condition on D,:

G (x)-G (N < Mllz-yli, ¥V x,9C D, .
If ¢ satisfies the condition

MIG) e < 2/5
and if there exist some positive integers p and g such that

psrpsq, for (=12, ..,
then the order of convergence, p, and the complexity, E, ot the sequence defined by
equation (8.1) satisfy:

paA,l/a, | (8.2)
and

E> (loglp)/(qtf) , (8.3)
where lp is the largest root of the equation 23 - 27 - (p-1)z - | = 0 (for which we can
check easily that 0.4 + vp < lp <05+vp.p=1,2.)

Proof:

The proof is easy but technical, and below we only give an outline for this proof.

ASYNCHRONOUS ITERATIVE METHODS ' 63

Let o = M||G ’({)“’ll, and let ¢ « 3w/[2(1-we)]. From the choice of ¢, we first no.te that,
starting with 2(0) C D,, lhe sequence [x(j)-&ll, j= 0,1, .., is strictlly decreasing and
satisfies: |

N+ 1-Ell < ellx (i _o)-¥lll=()-§ll , for i=2,3, ..,
and

N (i D-EN < ellatp - Elllal)-¥ll, for é=2,3,.. and j; < j< jq=Jj;*r;-
By substitution, it follows that, for i = 2, 3, ...,

Nt -l 5 ¢ e el M€l -2l
and, if we set u; ~ -logellx(j)-&ll, we obtain:

Wiag2u+ ('T““'L'—I g, for i =23, ...
Therefore, by using the lower bound on r,, we deduce that

Wipg 2y v (pfuj g vu o, for i=23, ...
kTh'Ls shows that «; tends to infinity at least as fast as Ap". Therefore, the order of
convergence, o', of the subsequevice x(j;), i =0, 1, .., must verify P2 lp. The bounds

(8.2) and (8.3) are derived directly from this last inequality. [|

In particular, if the cost ¢ j measures the number of evaluations of the operator G,

we simply have e = j, and, therefore, £, 2 (log)\p)/q. On the other hand, if the cost
corresponds to the execution time, the complexity will depend on the implementation
itself. For example, an implementation corresponding strictly to the generation of the
sequence described by equation (8.1) requires the use of a critical section for reading and
writing, in a block, the values of the iterates and of the derivative. The use o‘f a critical
section introduces an overhead, but, as i done with the PA method, the overhead can be

avoided if a process uses whatever values are currently available when needed. In this

case the bounds of Theorem 8.1 still holds, and ¥ can be given the value & = 1.

The paramelers p and q, too, depend on the particular implementation of the AN
method, and, especially, on the relalive speeds of the processors executing the processes

Py and P2. In practice, if the processors are equally as fast, we expect, with small

64 CHAPTER 11l

variations, r; to be close to n, and the values p = q = n can predict good estimates for the

complexity of the AN method implemented with two processes.

The AN method is easily generalizable to more than two processes. If k processes
are available, k; might be assigned to the evaluation of the sequence of iterates, while
ky = k - ky are assigned to the evaluation of the derivative. The bounds of Theorem 8.1
still holds for this case as well, only with different values for the sequence rip 6 =1, 2, ..
(or for the bounds p and q), determined by the parallel implementations of the two

evaluations. Further results in this direction will be reported elsewhere.

9 -~ Extensions of the results’

We mention below some direct exlensions of the results presentéd in this chapter
and some points subject to further development.

»

A straighforward generalization of the results can be obtained if, instead of IR™, we
“consider the product P of n Banach spaces B; with norms [l ¢ = 1, ., n. In this case, if »
is an element of P, x is determined by its components x, (B, i=1,.,n And |x|

represents the non-negative vector of IR™ with components "‘ilc" i=1,..,n

Considering only the class of linear operators, F(x) = Ax + b, we have noted that the
notion of contracting operators coincides with the condition that p(lA]) < 1. In [ll],'
Chazan and Miranker have shown that this condition is not only sufficient but also
necessary for the convergence of all chaotic iterations. This implies, in particular, that all
asynchronous iterations corresponding to a linear operator F are convergent if and only if
F is a contracting operator. The necessity of this condition, however, seems to be
inherent to the linear nature of the problem, and when we also consider non-linear
»Oper;;ntdrs the proof given by Chazan and Miranker does not apply any more. It would be
of interest to obtain conditions on the class of operatofs for which all asynchronous

iterations are guaranteed to converge. Similar conditions for the convergence of a more

ASYNCHRONOUS ITERATIVE METHODS ‘ 65

restricted class of iterations would also be of interest, in particular, for the subclass of
asynchronous iterative methods corresponding to the additional assumptions introduced in

Section 6.2.

The bounds we have obtained to estimate the rate of convergence of asynchronous
iterations have been derived by considering the worst possible case, and, compared to
actual measurements, these bounds are very conservative. It would certainly be very
useful to obtain bounds (or estimates) corresponding to the average behavior of
asynchronous iterations, for example, given the probabﬂity distributions of the two
sequences J and 4, or, more generally, given the distribution functions for the time it

takes the different processes {o evaluate the components.,

We have already mentioned the possibility of introducing a relaxation factor in
asynchronous iterations, and, for contracting operators, we have derived a possible range
that guarantees the convergence of all asynchronous iterations. Nothing is known,
however, about the optimal choice of the relaxation factor, for example, given dlrect'ly the
asynchronous iteration through 7 and 4, or, again, given the distribution functions for the

evaluation times.

10 - Concluding remarks

In the implementation of most parallel algorithms, synchronization seems to be
required to assure the communication between the processes, and to guarantee their
correct executions. However, the main drawback with synchronization is that it degrades
considerably the performance of the algorithms because it is very time consuming. The
class of asynchronous iterative methods avoids this drawback. It includes iterations
corresponding to a parallel implementation in which the cooperating processes have a
minimum of intercommunication and do not make any use of synchronization. The Purely
Asynchronous method described in Section 7.1 is a typical example of an asynchronous
iterative method. Asynchronous lterations' follow the same goal as chaotic

relaxations [11]: to eliminate the need for synchronization in a parallel computation.

66 CHAPTER 111

Asynchronous iterations. generalize to asynchronous iterations with memory which
allow different values of the same variable lo be used within the same computation. Using
the nolions of contracting operators and of m-contracting operators, Theorems 4.1 and 5.1
state sufficient conditions to guarantee the convergence of any asynchronous iterations
and asynchronous iterations with memory. These conditions are satisfied for a large class

-of operators.

In the second part of the chapter, asynchronous iterations are evaluated from a
computational point of view, then the results of a series of actual measurements (obtained
by running asynchronous iterations on a multiprocessor) are presented. These results

fully justify the use of asynchronous iterative methods.

General bounds on the complexity of asynchronous iterations are first derived
directly from the proof of the convergence theorem. Although these bounds are sharp for
a parallel implementation of Jacobi’s method, they are of little applicabilily since they
require ‘to know a priori the exact specificalion of each step of the iteration. Alfternate
bounds are then derived under additional conditions which are usually satisfied in
practical applications. These bounds are consistent with actual measurements; for the
experiments we have run, they are always within a factor of 6 of the measurements. In
addition, it is our feeling that these bounds can be largely improved if we take into
account specific characteristics of the problem being solved, therefore leading to a better
understanding of asynchronous iterations. In Section 8, for example, we have made a first
step in this direction, and we have presented an analysis for the Asynchronous Newton's

method.

A series of experiments has been conducted on C.mmp, a multiprocessor system
(with 6 processors at the time lhe experiments have been run), and several asynchronous
iterative methods have been implemented to solve a large linear system of equations.

4

They range from Jacobi's method, requiring a full synchronization of all the processes at

each step of .the iteration, to the PA method, which requires no synchronization at all. In

ASYNCHRONOUS ITERATIVE METHODS 67

between, the Al and AGS methods are derived from the usual Jacobi’s and Gauss-Seidel’s

methods, and they require the use of a critical section.

The experimental results show a considerable advantage for the iterative method
with no synchronization at all. For a number of processes up to the number of processors
available on C.mmp, the PA method exhibits full parallelism and has an optimal speed-up
compared to Gauss-Seidel’s method, the best sequential method experimented with. The
AJ and AGS methods have a very similar behavior, and when 6 processes are used the
overhead caused by the critical section impliesl that 38 percent of the time a process is
waiting for entering the critical section. As is intuitively expected, Jacobi's method has
the worst behavior of all the methods considered, and, with 6 processes, the overheacl; due
to the synchronization of all the processes at each step of the iteration, is about 57
percent (i. e., more than half the time a process is waiting for the other processes to
finish their compulations).

On the basis of these experimental results, and for the problem we have considered,
there does not seem to be any alternatives: the PA method is obviously the most efficient
one. In addition, another advantage of the PA method is that it is the easiest one to

implement, and, spacewise, it is also the most efficient one.

Finally, another possibility, which has only been outlined in this chapter, is the
introduction of a relaxation factor. Based only on a few experimental results (not
reported here), it is our belief that we can expect an improvement of the Furely
~/4synchronoﬁs Over-Relaxation method over the PA method similar to the improvement of
the SOR methbd over the Gauss-Seidel’s method, if we choose the relaxation factor in an
optimal way. The optimal choice of the relaxation factor depends not only on the system
being solved, b(nt also on the probability distributions of the varlous execution times by

the different processes.

68

Chapter 1V

On the Alpha-Beta Pruning Algorithm
Part 1: The sequential algorithm

1 -~ Introduction

Most so-called intelligent programs use some form of tree searching; among them,
most game playing programs are built around an efficient tree searching algorithm known
as the alpha-beta pruning algorithm. In the first part of this chapter, we investigate the
efficiency of this algorithm with respect to a cost measure first introduced by Knuth and
Moore in [35] and given in Definition 1.1 below. The second part of the chapter is
devoted to the study of a parallel implementation of the algorithm on an asynchronous

multiprocessor.

Definition 1.1:

Let N, 4 be the number of terminal positions examined by some algorithm A in
searching a uniform tree of degree n and depth d. The quantity
i 1/d
R pln) = Lmvm (Np o) /
s called the branching factor corresponding to the search algorithm A [|

s’

Analyses of the o8 pruning algorithm have been attempted in two recent papers by
Fuller, Gaschnig and Gillogly [23] and by Knuth and Moore [35]. Both papers address the
problem of searching a uniform game tree of degree n and depth d with the mﬂ pruning

d

algorithm under the assumptions that the n® static values assigned to the terminal nodes

are ‘i.ndependent identically distributed random variables and that they are all distinct. We

69

70 CHAPTER IV

immediately observe that, in order to evaluate the branching factor, the last assumption
requires that the n? distinct values assigned to the terminal positions be taken from an

infinite range. For most practical applications this is, however, unrealistic.

Futler, Gaf»chnig and- Gillogly developed 'm‘[23] a general formula. for the average
number of terminal positions examined by the o« procedure. Their formula, however, is
computationally intractable and leads to undesirable rounding errors for large trees (L. e,
for large n and d) since it involves, in particular, a 2d-2 nested summation of terms with
alternating signs and requires on the order of nd steps for its evaluation. Then tbhey gave
some empirical results based on a series of simulations, and compared the results with
actual measurements obtained by running a modified version of the Technology Chess

Program [24], [25].

In [35], Knuth and Moore have analyzed, under the same conditions, a simpler
version of the full «-R pruning algorithm by not considering the possibility of deep
cut-offs; they have shown, in particular, that the branching factor of the resulting
algorithm is O(rAn n). Knuth and Moore also considered other assumptions to account for
dependencies among the static values assighed to the terminal positions and developed
~analylic results under those assumptions. Their paper gives, in addition, an excellent

presentation and historical account of the «-f2 pru’n'tng algorithm,

Departing from the assumptions of the two papers we just mentioned, we first
consider the effect of possible equalities between the values assigned to the terminal
nodes of a un‘dorm tree, assuming that these values are independent identically distributed
random variables drawn from any discrete probability distribution. In Section 2, we
establish some notations and preliminary results, and in Section 3, we derive a general
formula for the number of terminal nodes examined by the o2 pruning algorithm when we
take into account both shallow and deep cut-offs. The evaluation of this formula requires
only a finite summation over the range of possible values assigned to the terminal nodes

and is relatively easy. We show, in particular, that, when the terminal nodes can only take

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 71

on two distinct values, the branching factor of the «-A pruning algorithm can grow with n
as O(n/An n) for some choice of the probability distribution. In Section 4, we show that,
when the discrete probability distribution tends to a continuous probability distribution,
the summation derived in Section 3 can be replaced by an integral, which constitutes the
worst case /over all discrete probability distributions. In Section 5, an analysis of this
integral shows that the branching factor of the o2 pruning Aalgorithm for a uniform tree of_
degree n grows with n as O(n/in n), therefore conf.irming a claim by Knuth and Moore [35]
that deep cut-offs have only a second order effect on the average behavior of the
o3 pruning algorithm. In Section 6, we propose a parallel implementation of the
W"ﬂ' pruning algorithm in which several processes search for the solution (i. e., the value
assoclated with the game tree) within different subintervals. This parallel implementation
is analyzed in Section 7; the parallel implementation with 2 processes, in particular, turns
out to be more than twice as efficient as the original o~ pruning algorithm, which is
consequently shown not to be optimal. Some concluding remarks and open problems are

given in the last section.

2 - ‘Presentation and initial properties of the o~ pruning algorithm

There are two usual approaches for dealing with searching a game tree.]n [23],
Fuller, Gaschnig and Gillogly adopted the Min-Max approach, while, in [35], K’nuth and
Moore chose the Nega-Max approach. We will briefly present, in Section 2.1, the two
approaches and introduce the «-f procedure in terms of the Nega-Max model. - Then, in
Section 2.2, we will reestablish an initial result of [23] which was stated in terms of the

Min--Max approach.

2.1 - The ««~A procedure

Let us consider a game (like chess, checkers, tic-tac-toe or kalah) played by two

players who take turns, It is common to represent the evolution of the game by means of

72 : CHAPTER IV

a game tree, where each position of the game is represented by a node. If the position is
a dead-end, the node is lerminal, otherwise all possible moves from that position are
represented as the SUCCESSOrs of the node. The structure of the tree is preserved by not
generating moves leading to some posilions already generated (thus, avoiding cycles); this
is the function of the move generator. The evaluation function is another important
mnction in game playing programs; it assigns to each terminal position a static value by
estimating various parameters such as piece counts, occupation of the I)oard; etc. The
evaluation function evaluates the terminal nodes from one player’'s viewpoint, giving
higher values to positions more favorable to this player. It is convenient at this point to
name the two players Max and Min. Hence, Max’s strategy is to lead the game towards
positions with higher values, while Mins strategy is to lead the game towards positions

with lower values.

The minimax procedure is directly based on this formulation and can be used by
either Max or Min to decide on his next move from a given position, assuming that his
opponent will respond with his best move. Using a rather brute force approach, the
minimax proc‘edure assigns values to all nodes of a game tree. It first assigns to terminal
nodes the results of the evaluation function, then it backs-up to internal nodgs

corresponding to a position from which it is Max's (Min’s) turn to play the maximum

(minimum) of the values assighed to its successors.

Suppose it is Max’s turn to play from an initial position (corresponding to the root
of the game tree), then it is his turn to play from any positioﬁs at even depth and Min’s
turn to play from any positions at odd depth. Therefore, the minimax procedure will
back-up values to the nodes of the game tree through a succession of

Minimazing /Maximazing operations. This corresponds to the Min-Max approach.

By observing that:
max{ min{ x, 2y, .. } min{ y(, ¥, . }, o } =

max{ -max{ -x, ~xy, .. }, -max{ -y, =¥y, . } . },

PART 1: SEQUENTIAL ALPHA-BETA PRUNING AL.GORITHM 73

the Min-Max approach can be directly reformulated into the Nega-Max approach. In the
Nega-Max formulation, a terminal node of a game tree should be assigned the resﬁlt of the
evaluation function only if it is at an even depth (assuming it is initially Max's turn to
play) and it should be assigned the opposite of the result of the evaluation function if it is
at an odd depth. The Nega-Max approach requires the same operator al all levels of a‘
game tree, and the uniformity of the notation will make it easier to carry out an analysis.

This approach will be used throughout.

Figure 2.1 shows the effect of the minimax procedure in a uniform tree of degree 2
and depth 4. The values assigned to the terminal nodes have been chosen arbitrarily. The

path indicated by a darker line shows the sequence of moves selected by the procedure.

Figure 2.1 - Searching a game tree with the minimax procedure

The minimax procedure is clearly a brute force search and, when exploring a node,
it uses none of the information already available from the nodes previously explored.
Obviously, by taking advantage of the information previously acquired we can easily
improve on the brute force search. Figure 2.2 presents some simple patterns in which the
distribution of the information could lead lo such improvements. In the figure, the circled
nodes have already been explored, and they are labeled with their backed-up values; the
values of the other nodes are yet to be determined. We are interested in the value v of

the top level node in both patterns (a) and (b).

74 . CHAPTER IV

// ».\
i N
6 4
VRN
(a) shallow cut-off ({ .
2

(b) deep cut-off
Figure 2.2 - Examples of possible cut-offs

Let us consider the pattern of Figure 2? (a) first. From the aefinltlcn of the
minimax procedure, the values v and x satisfy: h
v = max{ 3, -x}, x = max{-2,..},
which shows that x > -2 or 22 -2. Since 32> 2 2 -x, it follows that independent of the
exact value of x, we will have v = 3. This shows that we need not explore fuﬂher the

successors of the node labeled x if we are only interested in the value of v. This leads to

a first type of cut-offs known as shallow cut-offs.

The pattern of Figure 2.2 (b) illustrates a deeper cut-off. As with the previous
example, there are immediate relations between the values of the nodes. In particular, we
have y > -z, which leads us to consider two cases. Either y > -z, and this means that the
value y is determined by its right son(s) and cerlainly does not depend on the right son(s)
of z. Or y = -z, in which case, since 2 > -y and z 2 -2, we deduce x > -2 or -z < 2; but
since ¥ = max{3, -z} it follows that v = 3, independent of the exact value of » and, a
fortiori, independent of the exact value of z. This shows th'at in either case the successors
of the node labeled z need not be furlher exploréd since the final value of v would in no

.way be affected.

The two examples presented in Figure 2.2 indicate that a reduction of the search

PART J: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM ‘ 75

can be achieved if a node passes down to its sons the current value backed-up so far (3 in
the case of the two above examples) az a bound for pruning branches 2, 4, 6, ... levels
below; the bound can, of course, be improved as the search progresses down the tree

(teading to more and more possible cut-offs).

Using two bounds for even and odd levels of a tree, these improvements are

implemented in the following procedure adapted from [35].

integer procedure ALPHABETA(position P, integer alpha, integer beta):
begin inteper j, t, n;
determine the successor positions: PI' w P
if n=20 then
ALPHABETA := f(P)

n

else
begin
’ for j= 1 step 1 until n do
benin
t := ~ALPHABETA(P ,-beta,-alpha);
if t> alpha then Zalpha :-t; ,
if alpha > beta then goto done : 2.1
end;
done: ALPHABETA := alpha
end
end

|

The Alpha-Beta procedure (from [35])

The function denoted by fis the evaluation function which assigns static values to terminal

positions,

Knuth and Moore [35] have shown this procedure to be correct in the sense that the
call ALPHABETA(R, -, +w) assigns lo position P the value MINIMAX(P), assigned by the
minimax procedure. More generally, they showed [55, p. 297] that, if alpha < beta:

ALPHABETA(P,alpha,beta) < alpha, tf MINIMAX(FP) < alpha, ' (2.2)
ALPHABETA(F,alpha,beta) = MINIMAX(P)', if alpha < M]NIMAX(‘P) < beta, (2.3)
ALPHABETA(F,alpha,bela) > bela, . if MINIMAX(P) > beta. . (2.4)
The same tree used in Figure 2.1 to illustrate the minimax procedure is shown in

Figure 2.3 to illustrate the effects of the w-f procedure. The branches pruned by the

76 ' CHAPTER IV

procedure are indicated with dashed lines, and the nodes marked with a circle have not

been complelely explored.

) | .
IO o
SRR ’ "

Figure 2.3 - Searching a game tree with the o-A procedure

We observe that only 8 out of the 16 terminal positions and 19 out of all the 31 nodes are
examined by the o/ pruning algorithm in this example, reducing greatly the cost of
searching the tree. As is seen by comparing Figures 2.1 and 2.3, the values backed-up by
the o8 procedure to some internal nodes are not necessarily the same as the values
backed-up by the minimax procedure, as reflected by the indetermination in

equations (2.2) and (2.4). The top value, however, is not affected by this indetermination.

2.2 - Some properlies of the o4& pruning algorithm

In this section, we will introduce some notations which will be used throughout, and
we will reestablish, in terms of the Nega-Max approach, an initial result of [23] giving a
necessary and sufficient condition for any node of a game tree to be examined by the

a3 pruning algorithm,

2.2.1 - Notations

As in [35]), we will use the Dewey decimal nolation to represent a node in a tree.

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 77

More precisely, let ¢, the emply sequence, denote the root of the game tree. Then, if 7
denotes some internal node of the tree with n sons, J.j will denole the j-th son of node J,
for j=1,.,n In Figure 2.4, node 4.1.34.3 is the node at depth 5 whose path from the

root is indicated with a darker line.

c(a) = 2
c(a4.1) = -
c(8.1.3) = 3

c(4.1.3.4) = -5

c(4.1.3.4.3) = 0

w(4.1.3.4.3) = max{ c(4.1.3.4.3), c(4.1.3), c(4) } = 3

£3(4.1.3.4.3) = -max{ c(4.1.3.4),c(4.1) } = 5
Figure 2.4 - Portion of a game tree showing the path to node <4.1.3.4.3>

The value associated with some node 7 Of. a game tree by the minimax procedure

(see Section 2.1) will be denoted by v(7). Then, if 7 is a terminal node, v(7) is the static

wvalue asigned to that terminal position, and, if J is an internal node, v(7) is the value

backed--up to. node ./ by the minimax procedure. In the latter case, if node # has n sons,
v(J]) is given by:

v()) = max{-v(dj) | Isjsn}. (25)

In Figure 2.4, the nodes on the path from the root to node 4.1.3.4.3 are evaluated through

formula (2.5) while the other nodes (including 4.1.3.4.3) are shown as terminal nodes and

are assigned arbitrary values. (Nodes are labeled with their values.)

While the values v(J) deal with the static aspect of a game tree, the quantities we

78 o CHAPTER IV

will introduce next deal more with the dynamic aspect of the tree when being searched by

the w~A procedure.

For any node {}.j at depth d 2 1, we define:
c,((',l.j) = max{ -v(].i)|1sig j1}.
(By convention, the maximum over an empty set is def'@neci to be -co; in particular,
c(J.1) = -c0.) -For the root of the tree we also define c(¢) = -c0. The quantity ¢(7) accounts.
for the information provided to node J by its elder brothers. These values are.'md'lc:ated
to the right of the game tree shown in Figure 2.4 for all nodes on the path to node

4.1.3.4.3; only the nodes indicated with squares are used in computing these values.

We finally define for any node J = ji. ...jq at depth d21 in a game tree two
quantities directly associated with node 7 by the -8 procedure. For ¢ =0, .., d-1, let
Fi = J1e e -Jg-i We define:

w(F) = max{e(f) |iiseven, 0<si<d-1},

A(F) = -max{c(]) |iis odd, 0 <i<d-1}.
It is convenient to define these two quantities for the root of the game tree by wf(e) = ~co
and A(e) = +oo (which is consistent with thé definition). These «- and f-values are shown
in Figure 2.4 for the node 4.1.3.4.3 along with their definitions.

2.2.2 - Nacessary and sufficient condition for a node to be explorad by the «~/ procedure

The following lemma justifies the notations we just introduced in the preceding

section,

Lemma 2.1:

Assume thal, initially, the root of a game tree is explored by the w-R procedure
through the call

ALPHABETA(root,-oo,+e0) . (2.6)

Then, if node # is examined, it is through a call of procedure ALPHABETA in which the

parameters alpha and beta satisfy:

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 79

alpha = w(}), | (2.7)
beta = A(7). (2.8)
Proof:

Wd=jg. -Jq denotes some node explored by the procedure at depth d 2 1, let, as
before, 7; = jf . -Jq.; for 0sisd-1. Thus node 4y is the father of node 7, while, if
Jg 22, node J.(j 1) is the brother of 7 immediately preceding J (and explored just
before 7). Observe that, if jg = 1, e(dg) = e(}) = -0 and therefore: '

w(f) = max{ce(])|iiseven 0<isd-1}
= [-max{ el) liisodd, 0si<d-2}]
= - R(Fy)
(similarly, A(7) = -w(] (). Observe also that, if Jgz 2
(7)) = maxi w(7y), eld)}
= max{ «(7y), eld Gy D], W[J 1 Gg-1} |

and that A(7) = B[] 1.4~ D].

By the call of line (2.6), relations (2.7) and (2.8) certainly hold for the root of the
game lree, since w(e) = -0 and f(e) = +oo. Then the proof follows by induction from

inspection of the procedure ALPHABETA, and from the relations we derived above. n

The following theorem states a useful relation that characterizes the fact that a
node of a tree is explored by the o-f8 pruning algorithm. This relation was first
established by Fuller, Gaschnig and Gillogly [23] with different notations in terms of the

Min-Max model.

Theoram 2.1:
Assume that, initially, @twe root of a game tree is explored by the w-f2 procedure
through the call
ALPHABETA(root,-oo,+) .

Then, an arbitrary node J of the game tree is subsequently explored if and only if

w(f) < f(J). _ (2.9)

80 CHAPTER. IV

Proot:

Because of the presence of line (2.1) in the procedure ALPHABETA, the result

follows directly from the result of Lemma 2.1, v N

Since it will be more convenient in the following sections, rather than w(7) and |
£(3), we will use the quantities:
A(3) = max{ c(];) ‘I iiseven, 0<sisd-1},
B(7) = max{e(J;)|iisodd, 0sisd-1},
where 7, is defined as before. The definitions of A(7) and B(#) are more symmetrical, and
relation (2.9) can also be rewritten in a more symmetrical way:

AlJ) + B(J) < 0. (2.10)

3 - Number of nodes explored by the «~/3 procedure: discrete case

As in [23] and [35], we will evaluate in this and the following section the amount of
work performed in searching a random uniform game tree using the o~ pruning algorithm,
The definitioﬁand some properties of random uniform game trees are given in Section 3.1.
The amount of .work performed by the o-f procedure is measured by the number of

terminal nodes examined during the search and is evaluated in Section 3.2.

3.1 - Random uniform game trees

In order to perform an analysic of the «-R pruning algorithm, we will limit

ourselves and consider the following class of game trees.

Dafinition 3.1:

A game tree in which
(a) all internal nodes have exactly n sons, and
(b) all terminal nodes (or bottom positions) are at depth d

is called a uniform game tree of degree n and depth d.

A uniform game tree which satisfies the additional condition

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 81

(¢c) the values assigned to all terminal nodes (or bottom wvalues) are independent
identically distributed random variables

is called a random uniform game tree, or, for short, a rug tree. [|

Unless otherwise specified, we will only consider throughout a rug tree of degree n

and deplh d.

Since the value backed-up to a node by the minimax procedure only depends on the
backed-up values of its sons, we immediately observe that, by condition (¢), the backed-up
values of all nodes at the same debth are also independent identically distributed random
variables. In the remainder of the section, we will assume that the bottom values are
drawn from the finite set { x; = k/m | -m < k <m }, for some m > 0, and we will denote by
{pik)} - mck<m ©OF Ssimply {'p‘;(k)} the common pfobability distribution for the backed-up
values of all nodes at depth d - i (L.e., p;k) is the probability that the value, v(7),
backed--up by the minimax procedure to some node 4 at depth d-i be k/m). In particular,
{pg(k)} is the common probabilily distribution for all bottom values, and {py(k)} is the

probability distribution for the value backed-up to the root of the rug tree.

The following lemma states the relations between these probability distributions.

‘Lemma 3.1:
Fori =0, .. d-1, we vhave:
Piag(-m) + o4 ppy (k) = [pi(-k) + ..+ pi(m)]*. (3.1)
Proof:
Let 7 be some internal node al depth d-i-f, then by equation (2.5), v(7) < k if and
only if. ~v(J.j) s k, for j=1,.,n Equation (3.1) follows easily from the fact that all

variables v(4.j) are independent. ' [|

Since the quantity ‘pi_(~k) + .t p(m) will occur again later on, we define for
¢=0,1,.and -m<s k< m:

pi(k) = pi-k)+ ..+ pi(m).

82 CHAPTER 1V

For convenience, we also define pi(-m-1) = 0. Note that pi(k) is a non-decreasing function
of k which satisfies pi(-m-1) » 0 and pi(m)w pi(-m)+ .+ pim) =1 By rewriting
equation (3.1), we see that p, satisfies:

Pist(-h-1) = 1 -[p ()] for i=0,1,.., (3.2
and, therefore: |

Piaatk) = 1~ {1~ [p, ()" for (=0, 1, ... (3.3)

The following quantities will also be useful in Section 3.2. For i =0, 1, .. and
-m-1 < k < m, define:
Pik) = 14 [pi k)] + s [p 00T (3.4)
and
oilk) = L+ [p(-k-D]+ ..+ [p, (k-1 | (35)

Observe that pi(-m-1) = o, (m) = [and pim) = o;(-m-1) = n.

Lemma 3.1 establishes the probability distributions for all the values in the nodes
of a rug tree. The next lemma establishes a similar result for the quantities e(7) defined

tn Section 2.

Lemma 3.2;

Let 7./ denote any node at depth ¢, where i =1, ., d. If J=1,¢(1.j) = -0, If
J 2 2, then the probabilily distribution of c(,7.j), denoted by {qk(J.j)}_mSksm, satisfies:
Iopp(d-3) *+ o+ @ (F.J) = [py)1 ' (3.6)

Proof:

When j = 1, ¢(].j) = -co by definition. When j > 2, equation (3.6) follows from the

same argument given in the proof of Lemnia 3.1. n

In order to evaluate,-through equation (2.10), the probability that a terminal node is
explored, we first need to determine the probability distributions for the two quantities

A(#) and B(7). This is done in the following.

PART 1: SEQUENTIAL ALPHA-BETA PRUNING AL.GORITHM 83

Lemma 3.3:

Let # = jy-y- -J§-ig denote any terminal node.
(1) 1f j; = 1 for all even integers i in the range 0 < i < d-1, then A(}) = -co.
(2) . Otherwise, the probability distribution for A(7), denoted by {lap(@} - mck<my
satisfies:
@)+ (@) =TT, ItV (3.7)
where the product denoted by TTe is extended to all even integers in the range

0<isd-1.

- Similarly,
(o I Ji = l for all odd integers i in the range I < i < d-1, then B(J) = -co.
(2') Otherwise, the probability distribution for B(#), denoted by {bk(g)}%zsksnv
satisfies:
b () ¢ o v byl @) =TT (gt @38
where the product denoted by TTO is extended to all odd integers in the range
I <sis<d-I.
Proof:
We will only consider A(7) since the proof relative to B(7) is the same. Part (1)

follows directly from the definition. For parl (2), let J; denote the node Jd-1- - -Ji- We

i
note that A(7) < k if and only if e(7;) < k for all even integers ¢ in the range 0 < i < d-{
such that j; 2 2. Since the variables c(/;) are independent, equation (3.7) follows from

equation (3.6) by observing that, in the product He, a factor corresponding to j; = I

amounts to 1. |

The last lemma in this section states the probability of exploring a terminal node.

Lemma 3.4: *
Let 7 = jy.p o -J1-Jg denote any terminal node. The probability #(#) that node
Jis exam‘incd by the oA procedure is given by: '
n(d) = 1 if j;=1for all even integers i in the range 0 < i < d-1,

n(4) = 1 if j; =1 for all odd integers i in the range ! < i < d-1,

84 CHAPTER IV

M@ = k(D) by (D) s by ()] otherwise. (3.9)

Proof:

When Ji = 1 for all even integers i in the range 0 < i < d-1, by Lemma 3.3 A(}) = -co.
Hence A(J) + B(J) = - too, and by Theorem 2.1 node J is certainly explored. Similarly

when j; = 1 for all odd integers in the range 1 < i < d-1.

L

Otherwise, both A(#) and B(J) are finite. Let A(J) = z). We observe that
A(7) + B(J) < 0 if and only if -m <k < m-1 and -x,, < B(J) < %_j_y- Hence, equation (3.9)

follows from Theorem 2.1 and the fact that A(7) and B(J) are independent variables. |

Using equations (3.7) and (3.8), equation (3.9) can be rewritten as:
. - ’ jiet
(r o ‘.. (I n (-—k.]) i ,
) ~mf;£f;m~1 a(d) 1o lp;]

, 1 1 -1
e Tl =TT, lpte-DF) T, [-k-101' (3.10)

(recall that ¢ (-m-1) = 0).

n(}) =

3.2 = Number of terminal nodas examined by the o¢~4 pruning algorithm: discrete case

We are now able to evaluate the amount of work performed by the o«-2 procedure
~ while searching a rug tree. As in [23] and [35], we have chosen to measure the amount of
work by the number of terminal nodes examined by the procedure. (We will also consider
briefly, at the end of the séction, the total number of internal and terminal nodes explored

by the procedure as a measure of performance.)

Theorem ,3'l ¢

The average number, Nn,cl("’)’ of boltom positions examined by the

o3 procedure in searching a rug tree of degree n and depth d, for which the bottom

values are distributed according to the discrete probability distribution
{poth)} pickam 1S BiVEN by: o

Ny qm) = nld/2) eem Mo rith) = Tlg pithk-1] T, otk , (3.11)

where the quantities p(k) and o (k) are defined by equations (3.4) and (3.5), and

where the products denoted by TTe and ”o are defined in Lemma 3.3.

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 85

Proof:

By definition of the probability x(7), lhe average number of bottom positions

examined by the o2 procedure is

Npd(m) = 2 x(j),
where the sum is exlended to all terminal nodes J = jy.1. . -jj-Jgr and is actually: a
d-nested summation over the range I < jp<n, I's Jjpsn ., 1< jqgsn The summation
can be rearrdnged as:

Npdm) = Zonid) v Zon) + Z n(q) - n(l....1),
where the three summations XG, Zo and Z’ correspond to the three expressions for #x(j)
given in Lemma 3.4. The fourth term x(f....1) is subtracted from the sum since it is
counted by both Ze and ZO. These two sums are easily evaluated since all the terms »(7)
are 1. As x(1....1) itself is 1, we obtain:

Ny gm) = lt/20 e 020 5 ng) 3.12)°
It is to be noted that the first three lerms correspond exactly to the number of terminal
nodes examined by the o-R procedure under optimal ordering of the bottom values

(see [56, p. 201)).

We now evaluate the sum X'. Inside the sum the terms n(7) can be evaluated
through equation (3.10). We nole that all the summations relative to Jir fori=0,1, .. d-1,
can be done independently, each one being the sum of a geometric series. Uslng the
~quantities p;(k) and o (k) defined by equations (ém and (3.5), we obtain:

5w - (TTy pitk) = T, pik=-D] T, k) = TT, pim-1) + 1.

- m.-.;afi.m« 1
The theorem follows from this last equation and equation (3.12), using the facts that

pi(m) = n and thal o;(m) = 1. []

The formula of equation (3.11) can be easily evaluated and provides us with a
measure of performance for the «-f3 pruning algorithm. For some applications, however
(especially when the cost of generating moves is greater than the cost of evaluating

positions), it is more convenient to use the lotal number of nodes (internal and terminal)

86 ‘ CHAPTER IV

‘explored by giwe procedure as a measure of performance. Let Tn,d('") denote the average
of this number. The same way we evalualed Nn,d(’")’ we can evaluate Tn,d(’") by summing
the probabilities 7(,7) over all nodes of the tree. We obtain:
Tn,d(-m) = Ng”d(m) + N,’l’d(m) + .k Ng’d(m) ,

where Nfl,d(m) is the average number of nodes examined at depth i, and is dlrectly
derived from the expression of Nn,d('") in equation (3.11) by replacing d by i and {py(k)}
by {pg-;(k)} (recall that {py(k)} is the probability distribution for the values assigned to
the terminal nodes and that {p, .(k)} is the probability distribution for the values

backed-up to nodes at depth i).

3.3 - Bi~valued rug trees

Although it is relatively easy in most game playing programs to obtain (by
inspection of the evaluation function) an accurate bound for the range of distinct values
assigned to the various positions of the game, it is usually not so easy to derive a good
estimate for the probability distribution of these values. In the remainder of the section
we will study rug trees in which the terminal nodes can only take on two distinct values,
and we will see, in parlicular, that a change in the probability distribution of these values

can lead to yery important differences in the growth rate of N, dfm).

We will assume in the following that the values assigned to the terminal nodes of a
rug tree can only he either -1 or +1 with respec.t'we probabilities f-p and p, for someq
p € [0, 1]. Under these conditions, the number, Tn,d(p)' of terminal nodes examined by the
o3 procedure can be obtained as a particular case of equation (3.11) in which m = f and

{po(”)}—msksm. is defined by po(-1) = 1-p. pp(0) = 0, py(1) = p.

Theorem 3.2:

Let pg = p, and, for i = 1,2, ., let p; = 1 - p?_l.
Tpd® = nl@2Venld2) e yu e e -1, (3.13)

with

Piv] ‘ Pi+g
p, = 1T -~eb —p . JT el
e e,_m o ol“P,;

’

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM ' 87

where the products TTe and TTO are defined as before.
Proof:

Choose m = | and define the probability distribution {pok)} - pock<m PY po(-1) = 1-p,
po0) = 0 and py(l) = p. Hence pp(-2) = 0, po(-1) = po(0) = p =« pg and ¢n(1) = 1. By |
equation (3.2) we obtain:

pi(-2) =0, p;(-1) =9, (0)=p,, p(1) =1, for i=0,1,...

Then equation (3.13) follows directly from Theorem 3.1 and equations (3.4) and (35). B

Equation (3.13) can be evaluated very easily and, in particular, we note that for
0<p<l;
Tnd®) > Tpg(@ = Ty () = ald/20s pld/2) .y (3.14)
‘This last equation shows that 7'n’d(p) reaches its minimum nw/‘?] « nld/2] _ f for p = 0 and
p = 1. This is in agreement with the result of Slagle and Dixon [96, p. 201] since it
corresponds to the case‘whcn all terminal nodes are assigned the same value and
‘therefore 'all_possibte cut-offs do occur. Equation (3.14) also shows that Tn’d(p) admits a
maximum for p € (0, 1); although the exact maximum cannot be readily obtained, we will

derive a lower bound in the following. We first establish a preliminary result.

Lemma 3.5:

The unique positive root, §,, of the equation

"y -1 =0

x
is in the interval (0, 1). Asymptotically (for large n) it satisfies:
1%, ~ ftnn. (3.15)
Proof:

As there is no ambiguity, we will drop the index n from ¥, in the following.

Let g(x) = 2"+ x -1, nole that g(0)=-1<0 and g(1) =1>0. Since g(x) is
continuous and strictly increases for » positive, the equation g(x) = 0 admits a unique

posilive root, ¥, which is in the interval (0, 1).

We observe that equation ' + ¥ - [= 0 can be rewritlen as

88 CHAPTER IV

1-f = - : ’
Pae(rags sl
from which we deduce that

1-F > L, (3.16)
. n+ |
On the other hand, since ¥ = 1 - ¥, we obtain
n-1) > nin§ = In(1-¥),
which shows, along with equation (3.16), that
I-¥ < -,Iiln(n*l) = %ln n o+ O(n"z). (3.17)

Similarly, taking the logarithm of both sides of equation (3.17), and using the facts that

1 -¥F=¥tandthatlng>1 - é , we obtain:

1
£ < 1 +In(nin n+t)’

hence::
1-¥ > 1 tIn(nAn n+t) + O[('I- tn n)2-]' = Linn + O(-I« Inln n)
n n n n *

Equation (3.15) follows directly from the previous equation and equation (3.17). b |

| When p = ¥, we obtain immediately that, for i = 0, I, .., p; = &, Hence
Py = /-8 N2 and P, = (1, /00- /2
From equations (3.13) and (3.19) it follows that, for large n:
Tpd®n) ~ [nAn)Y, | (3.18)
while equation (3.14) shows that |

Tpd® = Tpag(t) ~ Ofald/21). (3.19)

Equations (3.18) and (3.19) indicate that T, J(p) can be largely influenced by the
varialions of the probability distribution for the static values. This result can be easily
generalized to N, 4(m). In the next section, we will derive an approximation to Nn,d('")

which corresponds to its worst case behavior.,

4 - Number of nodes explored by the ¢~/ procedure: continuous case

In thlS section, we derive an approximation to N, 4(m) by considering the limit of

the finite series of equation (3.11) when m tends to infinity while the discrete probability

PART 1. SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 89

distribution {po(")}--m,sksm, tends to a continuous probability distribution. This
corresponds to the case studied by Fuller, Gaschnig and Gillogly [23] and by Knuth and
Moore [35] when the terminal nodes of a rug tree are all assighed distinct values. In

parficular, we will reestablish (with a much simpler formula) a result of [23].

4.1 - Notations and preliminary results

We lirbﬁt introduce the sequence of functions {£;} mapping the interval [0, I] into
itself, and defined recursively by:
folx) = x,
fife) = 1 - -[f)Y Hor i=1,2, ...
It is readily verified by induction on i that all functions f; are strictly increasing on [0, 1]
and satisfy /fi(‘O) =0 and fi(1) = 1,i. e, 0and I are two fixed points of the functions fi for
all n and (. The function ft will be shown to be related to the quantities ¢2¢(k) defined in

Section 3.1, Similarly, in relation to the quantities poik) and oy, k), we detine the

following functions on [0, 1] for i =1, 2, .., let

LD,

(x) = il
rl' X) I“fl,"'J(x)
fi(x)
(x) = b
s;(x) i T

If we define ri(1) = n and s,(0) = 1, we observe that all functions r, and s; are continuous

on [0, 1] (they are actually polynomials in), and that r;

; is strictly increasing while s; is

L

strictly decreasing.

In relation to the two produds ﬂe and TTO, we also introduce, for i = 1, 2, .., the
following functions on [0, 1]:
Rl-_(r.) =rle) x ..« r“/ﬂ(r-) ,
Si(x) = s(x) x ¥ 8)i/2)(%) s
where S;(x) = 1. Observe here, too, that functions R; and S, are polynomials, and that,

when x increases from 0 to 1, R,(x) increases from f to nli/2] while S;(x) decreases from

n[“‘/zJ to 1.

90 CHAPTER IV

L'astly, for k = 0, 1, .., 2m+{, let

Ep = ¢O(k_—~m-l) .

Lemma 4.1: -
.For- i=1,2,..and k =0, .., 2m;1. we have:

rey) = popolk-m1), a.1)

s;(z)) = o;é_ﬂk—m—l) . (42) '
Proof: |

We first show that for i =0, 1, .. and k = 0, ..., 2m+1:

fiey) = poitk-m-1) . - (4.3)
Since fy(x) = z, it follows from the definition of ¢ that equation (4.3) holds when i = 0.
Assume, for induction, that equation (4.3) holds for i = h. Then by equation (3.3)

Popsth-m-1) =1 - {1 - [fp(z))]},

which shows that equation (4.3) also holds for i = h+! (from the definition of fhay)

Observe that ri(zy) = 1+ [f;_ (&})]+ ..+ [f‘-al(z:k)]"‘l, then equation (4.1) follows

from equations (4.3) and (3.4). Sumilarly, if we note that s;(x) can be rewritten as

=1 - [f;_ ()]

L= {1 - [f_ 1)’

equation (4.2) follows from equations (3.2), (4.3) and (3.5). N

Sl;(’x) =

4.2 - Number of hottom positions examined by the «~4 procedure: continuous case

Let us return to the definition of the sequence T, = {¢}}ockcrmes1- Ais was
observed (n Section 3.1 with the sequence {p(k)}, the sequence T, is non-decreasing and
defines a partition of the interval [0, 1], . e.:

0=tpg<s¥;s..28,y, s‘ Comser = 1.
The norm of the partition T, is
WT poll = max{ey -2, ;| 1sk<2met } = maxi potk) | -m<sksm}.

In the remainder of the section we require the following.

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM ‘ 9]

Assumblion:

(A1) lim max{ potk) | -msksm} = 0. []
ne-aoo

L3

. This assumption ensures that the norm of .the partition T, tends to 0 when m tends
to infinity, It also shows that, as m tends to infinity, the probability of two terminal
nodes being assigned the same value vanishes. This corresponds to the case studied by

Fuller, Gaschnig and Gillogly [23], and by Knuth and Moore [35].

With this assumption, we will now see that the finite series of equation (3.11) can '

be replaced by an integral when m~o. This is established in the follow'(ng.

Theorem 4.1:

Under assumption (Al), we have:
' d/2 Ly
lim Nogtm) = nl2 o /5 Ro@s 00 (4.8)
where Ry(z) is the first derivative of R 4(2).
-Pfoof: ’

Since there is no risks of confusion, we will drop, in the following, the index d from

the functions R4 and Sd'

It follows directly from Lemma 4.1 that for k = 0, ..., 2m+1:
Rzy) =TT, pytk-m-1) |
Sy =TT, oytk-m-1),
which shows that equation (3.11) can be simply rewritten as:

- nld/2] -
Np dfm) = n ‘1sksz‘2_m+1 [R(x)) - R(z),_y)] S(e,,) .

Let A, denote the series defined in this last equation.

Recall that R(z) is a polynomial. By considering the Taylor development of R(z)_4),
we obtain for k = 1, .., 2m+1:
Rlzy) - Rey_) = 42, (1R'(2),) + %[%“3/‘_1]2 R"(ty) ,
where £, _; < t) < &). Hence:

A [Zk"tk,,l] R‘(&’k) S(?fk)

- >
m 1sk<2m+ ! ;
- 1 - ? be
oy Hegr P R Sy (4.5)

92 CHAPTER IV

Since R and § are polynomials, the quantity |R"'(2)S(y)/2] is bounded by some constant,
say M, for any z and y in [0, 1]. In particular, the second sum in equation (4.6) is bounded
in module by M\T L2 5,,17%0) = MAIT Nl and therefore tends to 0 when m - o since,

from assumption (A1), IT,,,Il - 0.

As for the first sum in equation (4.5), we observe that it corresponds to a Riemann
sum_ for the function R'(x)S(x) over the partition T, of [0,). Therefore since, in
parlicular, this function is continuous and since ||T, || tends to 0, the sum tends to the

integral of equation (4.4). This proves the theorem. [|

In the remainder of the section we will reinterpret the limit of Nn,d("‘) established

in Theorem 4.1.

Let G be the distribution function of some continuous probability density function g,
and assume, to simplify the discussion, that G(-1) = 0 and G(1) = ! (therefore, G(z) = 0 for
x5 -1 ‘and G(x) =1 for x > 1). We define a sequence of functions Gm fpr m A= 0,1, .. as
follows. For -m < k < m, let xp = k/m. Function G, is defined as the following step
function: h

0 if x<x 0,

-m -
G,,(x) = Glzy) it xp <2< %y for -msk<m-1,
1 if =2, sx.
The sequence of functions {G,} constitutes a sequence of approximations to the
continuous function G. (It should be noled that the convergence of the sequence is
uniform on the interval {0, 1]) The function G, corresponds to the cumulative distribu(ion
of the discrete probability distribut(on po(k)nGm(xk’)-Gm(xk') associated with the

points zy = k/m, for k = -m, .., m.

Using the approximation {pyk)} ., kcn o the density function g, equation (3.11)
provides us with an approximation to the average number of bottom positions examined by

-the nfﬂ procedure in a rug tree in which the bottom values are drawn from the continuous

PART 1: SEQUENTIAL AlLPHA-BETA PRUNING AL.GORITHM 93

probability density function g. When m becomes larger, the approximation becomes
betler, and (due to the uniform convergence of the sequence Gp,) it can actually be shown
(in a rather technical way) that the limit of Nn’d(m) when m - o corresponds exactly to
the average number of bottom positions examined by the -8 procedure in the continuous
case. As a matter of fact, equation (4.4) could be derived directly by considering a
continuous probability distribution rather than a discrete one in very much the same way

we derived equation (3.11) in Section 3. This result is stated in the following.

Theoram 4.2

Let fo(x) = x, and, for ¢ = 1, 2, ..., define:

fie) = 1AL~ [,)R,
U1

(. = ot T
I‘l, x)]~»<j}~1(x)
f'(;l'-)
s (x) = et ,
¢ {f,'_l(x)]

Ri(x) = ry(x) x .. ~ rli/ﬂ(x) ,

Silx) = sy(x) x v sy p1(0).
The average number, Nn,d' of terminal nodes examined by the w-f pruning algorithm in
a rug tre'e of degree n and depth d for which the bottom values are drawn from ai
continuous distribution is given by:

!
Npo = rl2 o [0 RywS (4.6)

It is to be noted that, unlike the case of a discrete probability distribution, when
the bottom values are drawn from a continuous distribution, the number of terminal

positions examined by the «-R procedure does not depend on the distribution function.

4.3 - Discrote case versus continuous case

Since equation (4.6) has been derived as the limit of equation (3.11), it is reasonable
to investigate the validity of the approximation of N, 4(m) by N, 4. As was seen in

Section 3.3, Nn,d("‘) strongly depends on the probabiltity distribution {Pb(k)}~nask5nz and,

v

94 CHAPTER IV

therefore, we cannot expect N, 4 to be a close approximation of Np d4fm) in all cases. We
will see below, however, that Nn,d provides us with a good insight into the behavior of
the oA pruning algorithm, Namely, we will see that it constitutes the worst case of

N,, 4(m) over all discrete probability distributions.

Since N, 4 was oblained as the limit of N, 4(m), it is sufficient to show that, for all
probability distributions {Po Y pcke<ms We have:

Nn,d > Nn,d(’")' (4.7)

In order to prove inequality (4.7), it is convenient to give a geomelric interpretation of

both Nn,d and Nn,d("”-

Consider the curve (L) defined by the Cartesian coordinates (x, y) through the

parametric equations
(L): [x=Ryt), y=S§4t)],

where the parémeter t varies in the interval [0, I]. The integral of equation (4.6)
represents the area delimited by the curve (£), the z-axis and the parallels to the y--axis
at the abscissas Ry 0) = | and Ry(1) r nld/2] (see Figure 4.1). Since R4(0) = 1 and
S40) = nld/2J, the term nld/2] of equation (4.6) can be accounted for by the area of the
rectangle delimited by the x-axis, the y-axis and the lines z = I and y = nld/2] (the latter
line extends the curve (£) in a continuous way). Figure 4.1 represents the curve (£) and
its extension in the case n = 3, d = 6. The area below the unbroken lines represents the

quantity N, 4.

The sum of equation (3.11) can also be represented along with the curve (£). It
follows directly from the relations of equations (4.1) and (4.2) that the terms of the sum
represent the areas of the rectangles delirﬁited by the lines x = R(Uk_l), x=R@E), y=0
and y = S(zy), for k = 1, 2, ., 2m-1. The quantity Nn,d('") represents therefore the area of

Figure 4.1 shown below the broken lines.

PART 1: SEQUENTIAL ALPHA-BETA PRUNING AL.GORITHM 95

24

21

18 +

12

—
i

Rd(t)

Figure 4.1 - Geometric interpretation of Nn,d and N, (m)

Inequality (4.7), then, follows directly from the fact that, when t increases in [0, 1],

R(t) increases while S(t) decreases.

5 - On the branching factor of the o~3 pruning algorithm

We have deliberately chosen to introduce first the case when the bottom values of a
game tree are drawn from a discrete probability distribution since it is of most interest in
practical applications.- The case of a continuous distribution, however, lends itself more
easily to an ana.lysis, and, since it constitutes the worst case over all discrete probability
distributions, we will, in this section, examine the integral of equation (4.6) rathér tHan

the series of equation (3.11).

96 CHAPTER IV

5.1 - Previous results

In Section 1, we introduced the branching factor as a cost measure for the work
involved in searching a tree. Rather than consicdering the number, Nn,d' of terminat
positions examined by a search algorithm, as a measure of performance of the algorithm,
we could have considered the total number, Tn,d’ of nodes (terminal and internal) explored
during the search. In the case of the w-f prunipg algorithm, since Nn,d’ given by
equation (4.6), does not depend on the distribution function of the bottom values, we
deduce that’T'n,d satisfies: |

Thod = 1+ Npg ot Nnd -
It can be checked easily that 0 < Nn,é»—! < Nn’i, therefore Nn,d < Tn,d < dNn,d’ and:

G T = tim Ny 9/ o Ry at)
Thus, Definition 1.1 provides us with a measure of performance useful to compare search
algdrithms. In the following, we review some of the results which have already been

presented in the literature.

Minimax search

The minimax search examines systematically all nodes of a tree. It, therefore,
examines N, 4 = n? terminal nodes in a uniform tree of degree n and depth d, leading to a
branching factor

R

minimax(n) = n.

oc~@& procedure under aptimal ordering

Slagle and Dixon [56, p. 2017 have shown that, when all possible o~ and fS-cut-offs
occur, the oA procedure examines
Nl'l.,d - n[d/?] + n_l.d/‘?.l - 1
+ terminal positions. In this case, the corresponding branching factor is

Ropt(n) = nl/?.

PART I: SEQUENTIAL ALPHA-BETA PRUNING AL.GORITHM 97

o= prbcedure (experimental results from [23])

Based on a series of simulation results, Fuller, Gaschnig and Gillogly [23] have

argued that the formula

Ny = cld)n072d + 0277

constitutes a reasonable approximation to the number of bottom positions examined by'the
o3 procedure for small values of n and d, and that { < c(d) < 2 (at least for the range of
values they c(;ns;iclered). For purposes of comparison, lel us assume that their
approximation can be exirapolated for any n and d. Provided that c(d)’/d 2 1 when d - o,
we obtain

Ra,,,/;(n) ~ n072
In view of the results of Section 3.3, we can question the accuracy of the approximation

for large n since it follows from Theorem 3.2 that

lim T, 4@1/4 = Otfin .
300 ’

o¢=/8 procedure wilhout deep cut-offs

Knuth and Moore [35] have analyzed a simpler version of the w-8 procedure by not
considering the possibilities of deep cut-offs. This B-procedure is the same as the
a3 procedure except that no w-values are passed to the o-f3 procedure; instead, the
lower value o is always set lo - before exploring the successors of a node. Knuth and
Moore have shown that the branching factor of this procedure satisfies

Rﬂ(n) = nAnn).

Note that, since the R-procedure always explores more nodes at any depth in a tree than
the full ow-@8 procedure does in the same tree, Rﬂ(n) provides us with an upper bound for

EN__B(n).

5.2 - Bounds on the branching factor of the «¢~#4 procedure

In this section we will derive some lower and upper bounds on the branching factor

of the w~A pruning algorithm. In particular, since the lower bound we derive grows with n

98 CHAPTER IV

as n/ln n, we will be able to conclude, using the result on the branching factor of the
e~f3 procedure without deep cut-offs established by Knuth and Moore in [35], that the

branching factor of the o~ procedure is O(n/ln n).

We introduced in Section 4.1 the sequence of functions fipi=0,1,., from [0, 1] to
itself, and we observed that all functions f, share the two fixed points 0 and !
(independent of n). Another common fixed point, which depends on n, was introduced in

Section 3.3.

Lemma 5.1

For a given n, all functions f for i =0,1, .. share the common fixed point
¥, € (0, 1), the unique positive root of the equation
no,

x z ~ 1 = 0.

Proof:

For clarity, we will drop the index n from ¥, in the following.

Since fyp(x) - 2, ¥ is certainly a fixed point of fgi assume, for induction, that
fi-1(¥) = ¥, then from the definition of f; we have
G I VI V09) o O IR B L0 LR [L N

which shows that § is a fixed point common to all functions fpi=0,1,.. []

Since §,, is a fixed point cbmmon to all functions £, i = 0, 1, .., it is easy to evaluate
at this point the functions r; and s, defined in Section 4.1. For i = 1, 2, ..., we deduce that:
ri¥p) = sy (&, = £ /(0 -F,). (5.1)

In particular, it follows from Lemma 3.5 that, for large n:
ri¥p) = s¥,) ~ n/inn. | (5.2)
Equations (5.1) and (5.2) will be useful to obtain the desired bounds in the remainder of

the section.

The geometric representation of equation (4.6), given in Figure 4.1, makes it easy to

derive bounds on the quantity Nn,cl' They are stated in the following.

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 99

Theorem 5.1:
Th,e branching factor of the o~/ pruning algorithm in the search of a rug tree .of
degree n_satisfics:
afAnn ~ /(1-8,) s Ry, pln) < W ~ n/Ann, ' (5.3)A
forn =2, 3, ...
Proof:
Since, when t increases in [0, 1], R4(t) increases while S4t) decreases, it follows
directly that for any o in [0, 1] we have the following inequalities:
Ry(0).S (o) < Nod < Rylo).Sy0) + [R1) - Ry(e)]S 4w) . (5.4)
If we choose o - £ we have R(w) = [{,l/u—;n)]fd/?] and § (o) = [{n/(1~§n)]ld/2j. Since
Ry(1) = nld/2] ang Sq0) = nld/ﬂ, inequality (5.3) follows immediately from inequality (5.4)

and the results of Lemma 3.5. : [|

As an immediate consequence, we obtain Lhe following.

Theorem 5.2:

The branching factor of the o~/ pruning algorithm in the search of a rug'tree of
degree n satisfies, for large n: |
Rcv--[?(”) = O(n,/lﬁ n.
Proof:
The result comes directly from the lower bound £,/(1-%,) ~ n/An n of Theorem 5.1,
and from the upper bound]v?/;(n) obtained for the «-@ procedure without deep cut-offs,

which Knuth and Moore have shown to be O(nAn n). |

This results confirms, as was suggested by Knuth and Moore [35, p. 310], that deep
cut-offs have only a second order effect on the behavior of the w-R pruning algorithm. On
the other hand, it shows that the formula proposed by Fuller, Gaschnig and Gillogly in [23]
and mentioned in Section 6.1, if it constitutes a reasonable approximation for small values
of n and d (the range of values they considered is n + d < 12), is certainly not adequate for

large values.

100 ' : : CHAPTER 1V

We note that the bounds of Theorem 5.1 were obtained without difficulty by
conveniently choosing just one point, £ On the curve (L) since it was easy to evaluate
both Rq(%,) and S¢(f,) In the next section, using a ditferent approach, we will derive a

tighter upper bound for N, 4 and hence for Rn,‘,ﬁ(n).

5.3 = Improved upper bound

Since, for d = 1,2, .., Np g < Ny gyp < 1N, g, then, it (N, /9 tends to some Limit
when d tends to infinity as an ewen integer, this quantity tends to the same limit when o
tends to infinity as an odd integer. Therefore, without loss of generality, we will only

consider, in this section, the case when d is an even integer. Let d = 2h.

For z in [0, I] and for i = 1, 2, ..., we define pi(x) = ri(z)s(x).

Lemma 5.2:
All functions Py for i =1,2, .., have the same absolute maximum, M, in the
interval ,{O, 1].
Proof:
From the definitions of rifx) and s (x) we havé fori=1,2, .
ri(x) = rf,_(x)],
and
| si(x) = s)[f;,_((x)].
Therefore, for i » 1, 2, .., we also have, from the definition of pi(x):
pi(x) = pylf;_j(x)].
The lemma follows by observing that, for i = 1, 2, .., i-1 is a one-to-one function from

[0, 1] to itself. B |

Lemma 5.2 shows that, in order to study the maximum of pi(x), when x € [0, 1], it is

sufficient to study the maximum of the polynomial

pi(x) = 11" x 1 - (1 _’_zxn)n’ for = C [0, 1].
-z x ‘

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 101

Observe that M, > P, = [{,l/(l-g’n)lz, in particular, since it can be checked easily
that, for n = 2, 3, ., ¥, > Vr/(1+/n), it follows that

M. > n for n~ 2,3, ... (5.5)

n

Theorem 53

The branching factor of the «-f pruning algorithm for a rug tree of degree n
satisfies:
Rm..[g(n) < \/M: , (5.6)
where M, is defined in Lemma 5.2.
Proot:
From the definition of R,(t), we obtain for h = 2, 3, ..

Rop(t) = Rop-2(hrpt) + Rop ot)rp(t) .
By multiplication by Sopt) it follows that

Rop(t).Syp(t) = Rop-2t)Sop. ot pp(t) + Roph-2(t).Spp olt)rp(t).sy(t) .
Since, for t € [0, 1], all factors in this equation are non-negative, we deduce, using the
results of Lemma 5.2 and the fact that sp(t) < n when t C [0, 1], that:

ROR®ISpt) < MpRop oS5 o) + n M1 rpce .
Since, in addition,

Ro(t) Syt) = ry®) s;(t) < nrit),
it follows that for ¢t C [0, 1]and h = 1, 2, ..:

Rop) Sppt) s n ML (i@ v v)], (5.7)
Let In,d be the integral defined in equation (4.6). By integrating inequality (5.7) over
[0, 1] we see that In,d satisfies:

Inan s n ML h(-1)] < atn-1) h M P!
since rL-(O) = 1 and r,;(l) =nfori=1,2, .. This shows that

Nn,?.’h < nf s nin-D Mnh"l .

Equation (5.6) now follows directly from inequality (5.5). []

102 ' CHAPTER IV

5.4 - Numaerical results

Table 5.1 summarizes the results of this section. It presents the various lower and
upper bounds we have derived for the branching factor of the a~f pruning algorithm from

equations (5.3) and (5.6).

lower bound upper bounds

n ¥ /(18 ,) M, V¥ J(I-E,) | from [35]
2 1618 1.622 . 1.799 1.884
3 2.148 2.168 2.538 2.666
4 2.630 2678 3.243 3.397 \
5 3.080 3.166 3.924 4.095
6 3.500 3.638 ' 4.587 4.767
7 3915 4.098 5.235 5.421
8 4.309 4.549 5.872 6.059
9 4.692 4.003 6.498 6.684
10 5.004 5.430 7.116 7.298
11 5.427 5.862 7.726 7.902
12 5.782 6.290 8.330 8.498
13 6.130 0.713 8.927 9.080
14 6.473 7.133 9.519 9.668
15 6.809 7.549 10.107 10.243
16 7.141 7.963 10.689 10.813
17 7.408 8.373 11.268 11.378
18 7.791 8.782 11.842 11.938
19 a.110 9.188 12413 12.494
20 8.425 9.591 12.980 13.045
21 8.730 9.003 13.545 13.593
22 0.045 10.993 14.100 14.137
23 9.350 10.791 14.6065 14.678
24 9.053 11.188 15.221 15.215
25 9.052 11.583 15.774 15.748
26 10.250 11,976 16.325 16.265
27 10.545 12.3069 16.873 16.778
28 10.838 12,759 17.420 17.288
29 11.128 13.149 17.904 17.796
30 11.416 13.537 18.507 18.300
31 11.703 ©13.024 - 19.047 18.802
32 11.987 14.310 19.5806

Tablc—: 5.1 - Bounds on the branching factor of the w-f pruning algorithm

Although we have not been able to give an estimate for the asymptotic growth of
w/M“n, we can easily derive an upper bound for this quantity by studying rug trees of depth
2 since:

My s Npo < 28, /(08D - [8,/-5)F ~ 20°Nnn,

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 103

which shows that fM_,; < O(n/Yin n). The numerical results of Table 5.1 indicate that \/Mn

is a much better upper bound for Rm»-ﬂ"") than Jhg’n/(l—g'n) for the range of values we

have considered.

104

Part 2: A parallel implementation of the algorithm -

6 - A parallel «c~3 pruning algorithm

When several processes are available a solution that comes naturally to mind for
implementing the o-2 pruning algorithm is to have each process explore in parallel a
different subtree of the entire game tree. Each subtree would be explored using the
o3 procedure to back-up its value to its root, say some node P, then the value should be
reporied to the father of node P:in order to decide if the remaining brothers of node P

can be pruned.

A possible implementation for this solution is to have the parallel algorithm
organized around a static decomposition of the gahe tree, for example, by generating first
all nodes at; say, depth I or depth 2 before starling all processes in parallel. As is shown
in [37], however, static decomposition is not well adapted for execution on an
async.hro‘nous multiprocessor; this is especially true when processes have different speeds

and the various subtasks have different sizes.

A dynamic decomposition of the game tree, on the other hand, is better suited for
the processes to adjust their loads according to their own speeds. We immediately
observe, however, that a dynamic implementation will require a global data structure for
the processes to communicate among themselves. Since this data structure has to be
updated by more than one process in parallel, synchronization will almost necessarily be
required to preserve the validity of the structure at any time; in consequence, this will

create a large (and unwanted) overhead.

105

106 CHAPTER IV

Most important is that, by exploring in parallel and independently different subtrees
of the game’ tree, we loose the power of the w-A pruning algorithm. By looking back at
the original algorithm, we observe that its efficiency is mainly achieved by the fact that,
at any po'lnt‘during the search, the decision of pruning branches is based upan all the
information previously acquired during the search, Obviously, when different subtrees are
explored independently in parallel rather than sequentially, less information is available
to each process, and, consequently, in the overall more nodes have to be explored. As
will be seen, the parallel algorithm we propose below for the o~ pruning does not suffer

from the lass of information communicated between the various processes.

6.1 - A parallel implementation for the «c-4 pruning algorithm

While proving the correctness of the ALPHABETA procedure, Knuth and Moore [35]
have established equations (2.2), (2.3) and (2.4) mentioned in Section 2. We now

reinterpret these equations. Let V= ALPHABETA(P,o,R), and let VonM!NIMAX(P). It

follows directly from equations (2.2), (2.3) and (2.4) that when o < <8

)

if Vsa then Vo<, (6.1)
if welVep then Vy =V, (6.2)
if Vvap then Vo2 4. (6.3)

The value Vj (and the path in the game tree associated with that value) is the solution we
are seeking when the node F is the root of the game tree. Equations (6.1) to (6.3) suggest
that the problem of finding the solution Vo can be viewed as the problem of locating the
root of a monotonic function over some interval using only asynchronous parallel
evaluation of the function. (This root finding problem has been studied by Hyafil and
Kung, see [37] and [44]) Several differences are, however, immediately noticeable. In
the root finding problem we are only looking for an approximation to the root and each
evaluation of the function takes place at a single point. In the game tree searching
problem, on the other hand, we are interested in the exact solution and each intermediate

'search, or partial search, executed through the call ALPHABETA(P,w,(3), examines an open

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 107

interval: (v, R). Equation (6.2) shows that, provided the exact value lies in this open
interval, the call returns the exact solulion, and this terminates the entire search. The
following program gives a parallel implementation of the o~ pruning algorithm based on

this decomposition,

Program A:
global integer GALPHA, GBETA;

Initialization:
bepin
GALPHA := -00; GBETA := +co;
start processes P Pk
end .

Process £
bo,_tg
inteper /4/, SV ,
{(/4 B Sftll‘éTNiEWINTERVAL};
Whl(e A< B, do
J J
begtg
= AR RootA R frue);
lfl Vi< A thed
lwpm
{GBETA := min(GBETA,A +1); (6.49)
‘ (/l B/) = SELECTNE WII\fTFRVA(}
end
else
if V,>8; then
-— j | — .
begin :
{GALPHA := max(GALPHAB -1); (6.5)
(Aj,B) := SELECTNEWINTERVAL] .
end
else
begin :
{GALPHA :» GBETA := V/}; ‘ (6.6)
return the solution: V
terminate
end;
terminate

The two global variables GALPHA and GBETA define the current open interval
known to contain the solution V5. (When this solution is found, however, both GALPHA and

GBETA are set to Vg.) The interval (GALPHA, GBETA) is initialized to (-co, +c0). and is

updated each time a process finishes a partial search over the game tree The procedure

108 CHAPTER IV

SELECTNEWINTERVAL uses, without modifying them, the variables GALPHA and GBETA (as
well as Ay, .., A, and By, .., By) lo determine a new interval (Aj, Bj) over which process
Pj will proceed to a new parlial search. This procedure is critical to the efficiency of
Program A and will be discussed in more detail in Section 7. For the time being, we will
only assume that it meets the following specifications. Given the variables GALPHA and
GBETA (and the variables Ay, .., Ay and By, .., By), let (A, B) := SELECTNEWINTERVAL:

(a) A=B if GALPHA = GBETA; |

(b) A<B otherwise.

As we are only dealing with integers, condition (b) is equivalent to the condition A < B-1.

Since the two global variables GALPHA and GBETA are updated in parallel by
several processes, their use is restricted within critical section (indlcated in Program A
with curly brackels); the use of the procedure SELECTNEWINTERVAL also occurs within

critical section. .

Theorem 6.1:

At any time in the execution of Program A (outside a critical section), the
solution V salisfies either one of the following two conditions: ,

GALPHA < Vy < GBETA, ' (6.7)

GALPHA =V = GBETA . (6.8)

Proot:

After initialization, at time tg, the variables GALPHA and GBETA are only modified
(in a critical section) through one of the instructions (6.4), (6.5) or (6.6) executed at the
time instants ST SYPRAE FHae (with t;21, ¢ for i22). After tos GALPHA = -0o and
GCBETA = +oa,l therefore condition (6.7) is certainly satisfied. Assume that after tio g for
i 2 1, condition (6.7) or (6.8) is satisfied. If instruction (6.6) is executed at time t; by
process Pj, it follows from equation (6.2) that Vj = Vg, therefore condition (6.8) is satisfied
after t,. If instruction (6.4) is executed at time t; by process Pj, it follows from

equation (6.1) that Vo:;Aj, or egivalently V0<AI»+1 (recall that both Vo and Aj are

/’

PART 2: PARALLEL ALPHA-BETA PRUNING Al.GORITHM 109

integers); if, prior to 1, condition (6.7) were satisfied, then Vg < GBETA, which shows that
V0<min(GBETA,AJ-41) and condition (6.7) remains satisfied after t; if, prior to t
condition (6.8) were satisfied, then GBETA = Vo < Ajd, which shows that
min(GBET’A,Aj+1) = GBETA and condition (6.7) remains satisfied. The same holds when

instruction (6.5) is executed. []

Theorem 6.1, along with the specifications (a) and (b) of the procedure
SELECTNEWINTERVAL, proves the correctness of Program A in the sense that if the
program terminates it generales the correct solution.

:

Proving the termination of Program A, on the other hand, requires additional
specification of the procedure SELECTNEWINTERVAL. Observe, for example, that, if we
always have Aj = Bj—l, the open interval (Aj, Bj) does not contain any integer (/lj and Bj
are integers themselves) and no solution can ever be found. If, however, we replace
condition (b) above by:

(b") A< B-2 otherwise,
it can be shown easily that the lenglh of the interval (GALPHA, GBETA) decreases at least
by 1 each time a process comblelas a partial search. Since in a practical implementation

the interval (oo, +) is actually a finile interval in which we know that the solution Vo is

to be found, we are guaranteed of the termination of Program A under condition (b’).

6.2 -~ Some improvemants on Program A

A feature of the parallel implementation presénted in Section 6.1 is that
intercommunication between processes is reduced to a minimium, and confined to the
selection of a new interval over which a partial search is to take place next. As a
consequenc:e,‘ once a process has .initiated a parlial search, it runs until completion
oblivious of the results of the other processes. This can obviously be overly wasteful
since the interval searched by a process might be ruled out by some other process very

soon after the beginning of the search.

110 CHAPTER IV

This shorlcoming can be eliminated in several ways. First, a process completing a
parlial search could check all other processes, causing them, if necessary, either to abort
their searches or to readjust their intervals. This solution, however, requires a lot of

book-keeping and becomes unpractical when a large number of processes are cooperating.

Another solution is to have ea‘r:h process modify its own interval by regularly
checking possible changes of the variables GALPHA and GBETA during the search. Let
A's A<Bs B, 5nd consider the two calls: |

ALPHABETA(Root,A',B") and ALPHABETA(Root,A,B) .
It ts easy to check, by induction, that if node P is explort;d by the second call, through
ALPHABETA(R,o,8), node F is also explored by the first call, through ALPHABETA(R,&",R").
Moreover, the bounds o, £, o' and £’ satisfy:

o = maxi{n' A}, B = min{R’ B}, if P is at even depth, (6.9)

o = max{o’,- B}, A = min{fA',-A}, if Pis at odd depth. (6.10)
The procedure AR, below, is a modification of the procedure ALPHABETA, in which the
bounds alpha and beta are regutarly updated according to the relations (6.9) and (6.10) to

take into account the changes of the two variables GALPHA and GBETA.

integer procedure AB(position P, integer alpha, integer beta, boolean even):

begin
determine the successor posilions: Ps v P
if n=0 then
AB = f(P)
bepin
for j:=1 step I .until n do
begin -
t := ~-AB(P ,-beta,-alpha,nol even);
if t>alplia then alpha ::- t; ’-
it even then :
(alpha := max{alpha,GAl.PHA}; beta := min{beta,GBETA})
else
(alpha := max{alpha,~-GBET A}; beta := min{beta,-CALPHA});
if alpha = bela then goto done
end;
done: AB = alpha
end
end

A modified Alpha-Beta procedure

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 111

Relations similar to the relations (6.1), (6.2) and (6.3) hold for the procedure AB as
‘well. Consider the call:

Vie AB(PAleue) , | (6.11)
and as before detfine Vo := MINIMAX(P). Also, let A and B denote the values of the two
'variables CAI,PHA and GBETA when rehﬁ-ning from the call (6.11) (i. e., as of the last time
they are used during the execution of the call). For A’ and B’ satisfying A' > A and B’ < B,

define &’ = maxfw,A’) ;;l\cl R = min{A,B°}. We have the following.

Theorem 6.2

With the above notations, provided that:
A s VgsB' and o' <f’,
we have:
if Vso' then Vy<o',
f o' <Vep’ then Vy =V,
if Vapr then Vg2 8.
Proof:
The proof follows easily (by induction on the depth of node P) from the

relations (6.1), (6.2) and (6.3) and the relations (6.9) and (6.10). a

Program B, below, directly implements the relations stated in this theorem. Since
the analog of Theorem 6.1 can be proved for Program B as well, its correctness is a direct

consequence of Theorem 6.2,

Progr;m 13:
global inteper GALPHA, GBETA;

Initialization:
bepin
GALPHA := ~o0; GBETA := +oo;
start processes Fps o Py
end

112 CHAPTER IV

Process P :
begin
inteper A, B, V; '
(A, B) & SELECTNEWINTERVAL;
while "A; < B; do '
bepin
V= AB(Root,A B ,lrue);
A i max(A GALEHAY B j = min(B ;GBET A);
it/ A, <B; then
S
begin
it V;<A; then
bepin
{CBETA := min(CBETAA +1);
(Aj, B) i SELECTNEWINTERVAL}
end
else
if V;28; then
bepin
AGALPHA :: max(GALPHAR -1);
(Aj, B)) 1= SELECTNEWINTERVAL}
end
bepin
{GALPHA := GBETA := V }};

return the solution: Vj;
terminate
end
end
else _
{(/lj, Bj) 1= SELECTNEWINTERVAL}
end; A
terminate

end

Pr()c‘vedures ALPHABETA and AR ir'np(emcnt two extreme alternatives in which the
bounds alpha and beta are never updated and in which they are updated each time they
are us;ed.. A more efficient implementation would be to update alpha and beta only when
changes have been made on the variables GALPHA and GBETA. This can be achieved very
easily by introducing a global counter incremented by 1 inside the critical section after
each of the instuctions of Program B modifying GALPHA andfor GBETA, and by introducing
a counter local to each process to check if the latest modifications of CGALPHA and GBETA
have been taken into account. Since the counters can only increase, no additional critical
section is required. We will nol present the implementation details, but the point, here, is
mainly to show that it is possible to implement (at a very low extra cost) each process so

that it is continuing a partial search only if the result of the search can produce the

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 113

solution or, at at least, a reduction of the interval in which the solution can lie. In
particular, we note that, in Program B, process Pj will terminate its search as soon as, for
example, GALPHA = 8/- or GBETA < Aj, either condition ruling out the original interval

(Aj, B/-). This properly will be taken into account in the analysis presented in Section 7.

7 - Analysis of the parallel oc~4 pruning algorithm

We will proceed in this section to the analysis of the parallel algorithm described in
the preceding section. Since the algorithm is organized around parallel executions of
partial searches, it is the first thing we want to analyze. Most of this analysis differs very
slightly from the analysis developed in Sections 2 and 3, and we will only present in
Section 7.1 and 7.2 the main results teading to the evaluation of a partial search. The
overall evaluation of the algorithm.depends upon the procedure SELECTNEWINTERVAL and

will be derived in Section 7.3.

7.1 - Condition for a node to be examined under a partial search

As in Section 2, let 7 = Ji+ = -Jq denote a node at depth o in a game tree and, for

0<ixgd-1, let J‘: = jl‘ jd.‘_

The notations for v(7) and c(J) remaining the same, we
now define:

@'(}) = max{ e(dq-) lilsodd, 1 <si<d},

R(7) = max{ clfq.i) lilseven, I<isd}.
Given the two bounds a and b, we also define:

A'(7) = max{a, o'(7)},

B'(7) = max{-b, f°(7)}.
~ The analog of Theorem 2.1 for a partial search can now be stated in the following.

Theorem 7.1

Assume thal the root of a game tree is explored through the call

ALPHABETA(Root,«v,/3)

114 CHAPTER IV

by some process executing the parallel procedure of Section 6.1. Then, with the
abave nolations and provided Lhat a < b, an arbitrary node # of the game tree will be
subsequently explored if and only if:
A'(F) + B(3) < 0. ‘ (7.1)
Proof:

The proof is immediate by induction. [|

Observe that, when the procedure AB of Section 6.2 is used instead of the
procedure ALPHABETA, condition (7.1) only remains a necessary condition for node 7 to be
explored through the call AB(Root,w,R). It is no longer a sufficient condition since, by
updating the bounds o and 2 during the execution of the pr0cedure AB, additional pruning

might occur,

In the following evaluation of a partial search we will assume that the process
executes the procedure ALPHABETA, and we will utilize condition (7.1) to characterize the
fact that node 7 is explored.

Id

7.2 = Average numbaer of nodos explored under a parlial search

As before, we will consider a rug tree of degree n and depth d, and we will assume
first that the boltom values are independent identically distributed random variables
distributed according to some discrete probability distribution {PoR)} sk sms Where po(k)

is the probability that a bollom value be assigned the value xy = k/m, for -m < k < m.

Given two bounds o and £, we define ky and k, by:

“’"”'kj’ ﬂ””k;'

Since the values « and A could be unbounded, it is convenient to define X_p 4 = - and
m-1

%, 4q = *oo. Throughout we will only consider the partial search corresponding to the call

ALPHABETA(Root,e,R), and we will assume that o < 8, which can equivalently be expressed

as ~-m-1 k, < k2 < m+l,

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 115

Using arguments identical to those of Section 3.1, the probability distributions for
the quantities A'(7) and B’(]) can be obtained immediately as a function of the quantities
pi(k), for 0 sisd and -m-1 <k <m. Then the probability n(}) that some node 7 of the
‘géme tr.ee be explored under a partial search can be derived from these results using the
characterization given by condition (7.1). As with Theorem 3.1, the following theorem
results direptly from the‘expression for (7). In order to present a uniform result
‘(independent of the parity of d) in this theorem, we depart slightly from the notations of
Section 3.1, and the products denoted by TTe and TTO are now extended over all even and

odd integers i, respectively, in the range 1 < i < d.

Theorem 7.2:

The average number, Nn’d(m,cv,ﬁ). of bottom positions examined under a partial
search is given by:
NpdmonR) =TT, pg k) x TTo oy itk)

' k,+1$%sk2—l (Mo g k) - T, pa-itk-1] x Ty og_itk) . (7.2)

Proof:
As with the proof of Theorem 3.1, the result follows directly by summing the

probabilities 7(7) over all terminal positions 7, | n

When assuming that all bottom values are distributed according to some continuous
probability distribution (or, similarly, are all distinct), agvain we can obtain, as in
Section 4, the average number of botlom positions examined under a partial search ‘by
considering the limit of Nn,d(”"“’m in equation (7.2). At this point it is convenient to
consider the cumulative distribution for the value v(Root) with respect to the two points «
~and . Na’mely, given the probability distribution {pd(")}—msksm (or equivélently
{pot)} - pock<m) and given & = xk, and £ = xkz, we introducg:

ag, = pg-m)+ ..+ pylky) = 1 - po(-ky-1),
b,, = pg(-m)+ ..+ pytky) = 1 - pol-ko-1) .
If, in general, we let:

t = py(-m)+ ..+ pyk) = 1~ p,4(-k-1),

116 CHAPTER IV

and define in an obvious way the functions P and Qon [0, 1] by the correspondence:

P(t)

no pd__l‘(k) ,

O(t) ﬁe Vd"t(k) ’

1

we can state the limit of equation (7.2) in the following theorem.

Theorem 7.3: .
Provided that:
lim méx{ o) | -mshksm} =0
3o
and that:

lim e, = a, lim b
m-3co oo

m=b,
the limit of Nn’d(m,ty,ﬁ), when m - o, is given by:

b
Np dlab) = P@).O) + [~ P'(t).Qet).de . , (7.3
’ a

Both Theorem 7.2 and Theorem 7.3 provide us with a cost of executing a partial
search, measured by the number of terminal positions examined during the search, when
the bottom values are distributed according to either a discrete or a continuous

probability distribution.

In Figure 7.1, we have plotted, for x € [0, 1], the two quantities

G(x) = P(x).0(x), |

Hx) = f “ P00 .
‘We deduce from equation (7.3) that Nn’d(a,b) can be expressed directly from these two
quantities asa:.

Nn,,d(o"b) = Gla) + Hb) - Hia),
with an immediéte interpretation in Figure 7.1. If we consider the case when the bottom
values are distributed according to a discrete probability distribution, then Nn,d(m,cv,ﬂ), as
given by equation (7.2), can be expressed similarly as a function of a, and b,. The
functions G and H are, in this case, simply replaced by step functions, which coincide with

the continuous functions G and H at the points t, = [- pyl-k-1), for -m < k < m.

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 117

G(x), H(x)
200 + :
[
I
- 1
’ 1
/ !
e '
/’// :
]
/// 1
150 T H(X) v :
}
/]
]
)
I
i
|
i
!
!
te0 4+ /LR T e - |
~_ :
|
[}
|
)
!
G(x) |
50

1
!
!
|

I E]

0 ' t t : t ' ' } ' ' + :

0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 7.1 - An interpretation for Nn,d(a,b)

7.3 = The analysis of the paraliel «=4 pruning algorithm

The results of Section 7.2 show that the cost of executing the partial search.
corresponding to the call
AL PHABETA(Root v, 3)
can be expressed by:

cla,b) = Gla) + [H(b) - H(a)],

118 : CHAPTER IV

with

a =~ ProbalV<eo} , b = Proba{ Vs R},
where V is the random variable representing the value backed-up to the root of the game
tree (by the MINIMAX procedure). Given the probability distribution for the random
variable V, we have a one-lo-one correspondence between intervals (e, B) of (-0, +e0) and
iﬁtervals (a, b) of (0, 1). Using this correspondence, we will only talk in the following

about partial searches over intervals of (0, 1).

Although the two functions G and H are readily computed numerically, they do not
lend t.hemsel\{es very easily to analysis and, in the remainder of the section, we will
consider an approximation suggested by Figure 7.1. We notice in the example depicted in
this figure that G(x) remains nearly constant when x varies in the interval [0, 1] and that
H(x) varies almost linearly on the same interval. While the numerical results presented in
~ Figure 7.1 correspond to a parlial search of a rug tree of degree n = 3 and depth d = 6,
numerical results obtained with other values of n and d actually show that the
approximation of G by a constant and of H by a linear function is even better for large
values of n ‘and d. This is especially true in an open interval contained in [0, 1]. In
consequence, we will assume in the following that the cost of executing a partial search
over any interval (a, b) of [0, 1] is exacltly given by:

cl@b) = p+gqlb-al, A | (7.8)
where p and g only depend on the rug tree itself (i. e., on n and d). Numerical résults, not
presented here, have been run for n = 3, 4, 8, 16 and 32 and for 2 < d < 8, it turns out that,
if, qbviously, p and q are very dependent on n and d, the ratio A = p/q does not show a

large variation and lies typically in the range 0.2 < A < 0.4.

Without loss of generality, we will normalize the cost c(a,b) of equation (7.4) by
assuming that g = I (hence p = A) and we will consider throughout that:
clah) = A+b-a,
or, equivalently, with b = a + h, tha@:

cla,a+th) = A+ h. ‘ . (7.5)

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 119

This cost will also be taken, in the following section, as the time for a process to execute

a partial search over the interval (a, b) = (a, a+h).

7.3.1 = An analysis af the paraliel implomentation: Optimal decomposition

Given the cost of a partial search through equation (7.5), we will determine in this
section the optimal decomposition of the interval [0, 1] and, with this result, the optimal
procedure SELECTNEWINTERVAL, introduced in Section 6.1 for k » 2, processes can be

defined.

As an example, we first examine the special case when the interval [0, 1] is split
b'mto k subintervals 1, .y I} searched in parallel by processes Fis s P respectively. Let
s; be the size of I, for i = 1, ., k, with §p ¢+ s, = 1. Under this decomposition, process
P, will find the solution, with probabilily s;» after a cost A + s;- Therefore, the aver‘age
’cyost (or ti;‘ne) to find the solution is, in tﬁis case, simply given by:

t o= spResy) 4 L4 s‘k.O\ +sy)

= A + s% + . +'s£,

for which the minimum, Tgr is achieved when $; = k’—, for i=1,.,k (recall that
Sp * .+ sg = 1) This yields:

Top = A+ é .
The decomposition of the interval [0, 1] presented in this example is the simplest one, and
it does not allow any feedback between the processes since the k partial searches cover
the whole interval [0, 1]. The example confirms, however, the obvious fact that, in order
to achieve the minimum cost, the k subintervals searched by the k processes should be of

equal length.

In order to introduce some feedback betlween the processes, we now consicder a
further decomposition of the interval [0, 1] illustrated in the diagram of Figure 7.2 in the

case of two processes.

120 . CHAPTER IV

p——t——Ws55555555 ———— V555555555 —————
0 a b c d 1

Figure 7.2 - A decomposition of [0,1]

The two processes F; and F, start exploring in parallel the two subintervals [a, 6] and
[e, d], respectively. If either process finds the solution at the completion of this first
search, with probability (b-a) or (d-¢), lhe execution terminates with a cost of either
(A+b-a) or (A+d-c). OIherwisé, consider that process P finishes first. If it finds out that
the solution lies in the interval [0, a], we know that, with the implementation proposed in
Section 6.2, process £, will terminate its search"lmmediately after and, therefore, both
processes can start simultaneously new partial searches within the interval (b, al. If, on
the other hand, process Pj finds out that the so‘lution lies in the interval [b, 1], it will
start arbitrarily a partial search over an interval within [b, ¢} or [d, 1] while wait"mg for
process P, to complele its initial parlial search and, possibly, will readjust its search as
soon as process P, finishes. If we assume Lhat both intervals [a, b] and [e, d] are of equal
lenglh, both processes will finish their initial searches roughly at the same time. We will
neglect in the following the delay involved in making the decision as to which subinterval

actually contains the solution, and we will assume that, if the solution has not yet been

found, the processes restart a new partial search simultancously.
y p

According to this <iecdn1position, k subintervals are initially searched by the k
processes and, if the solution is nol found during this first trial, it is known to lie in ! of
k+1 subintervals depending upon the outcomes of the first partial searches. Thus k
subintervals will be searched during the second trial out of a total of k(k+!) possible
subintervals. In general, if not successful after the i-th trial, the k processes will start
simultaneously k new parlial searches over a; = k(k+1)E pbssible subintervals during the

(i+1)-st trial.

Let hy = 1, and, for i = 1,2, .., let h; be the lotal length of the interval [0, 1] that

still could be explored after the i-th trial. Then, for i = 1, 2, .., hi—l - hi measures the

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM . 121

total length of all a; ; subintervals that could be searched during the i-th trial. It also
measures the probability that the solulion be found at that time after a cost c; given by:
Ci e [A + (ho - hl)/(lol + .t [A + (hL”I - hL)/ar,] N

assuming that the a,

i1 subintervals that could be searched during the i-th trial have all

the same length: (h;_, - h)/a;..q.

The total average cost, T, follows immediately. We have:

Tom 2 by ke,

T = ;ix iMhy_g - h) + ig__l [hy - hy) 1;2};@ (hjy - hplaj.q],
T = lzé'o h, + gﬁo h, (b - h;\)fa, (7.6)

The f’ollowing theorem states the Optimal'decomposition {h;};>0 leading to the
minimum average cost of expression (7.6). For k> 2, we will consider the following
sequence of intervals (recall that ;= ke(h+1)J):

Ag = [1/ag, +),
Aj = l/a, (k~l)/¢xj), for j=1,2, ..,
and

Bl = [(k"!)/(lj, ’/Qj_,) , for j" 1, 2, v »

Theorem 7 .4:

Assume k > 2, and let Ck()‘) denote the minimum of expression (7.6) over all
possible decompositions {A;},,,.
(@) It X € Aj, for some j = 0, 1, .., the minimum of expression (7.6) is achieved for:

ho = .= h/ = 1 and h/"'] = hj‘z = o= 0,
yielding:
CiA) = (j+1A + ‘1!;
(b) Otherwise, if A (Bj, for some j = 1, 2, ..., the minimum is achieved for: .
1 I
ho =, = hj'l e | , hlgiaj(d}’.]'—k) and hj"l =hj"’2='" =0 ,
yielding:

; 11 .1 _3)
Ck(l) = /A + a—;:—l' 401(1 A) .

b’l"

122 CHAPTER IV

Praof:

Observe first that the decompasition “‘L}L‘zo satisfies:

1mhozhlz...::hi_,;:hiz...zo.

Assume that A > I/aj, for some j > 0. Given any decomposition {‘hi}ézol' ‘éonside,r
another decomposition {g)50 defined by:
: h, U i<y,
- 0 if ix 1,
and let T’ denote the expression (7.6) where {h;};50 is replaced by {e;}is0- We have:

J - ’ = \ T & ...1._ . ,o- .
T b ‘ lj:‘] h“ ‘2%1 ﬂv"' h“ (h" hl,*l)
- ..’!.._I__.. . . - ’
+ [J\ a/_ hj + “j+1 h/*l (hj*l hl,2)]

7 Y B - h;
20+ 0 + Ia,— a; * @l hjag hjsg hjs2)]
= h»)-;-? hj‘] (hj*l “h/*‘?) 20,

which shows that T is minimized when h; = 0for ix jef.

Assume now that A < (k-—l)/aj for some j 2 . Assume furthermore that hi.y =1 for
some i, I <i < j(recall that hy = 1). We have:
A < (k-l)/aj < (k—l)/ai_,

which shows that the derivative, t; of T with respect to h; satisfies:

tL = 2 "‘:‘Z hl + A - Tl:T hl"l - "'"nL h“+l
= 2 .l: hl + A - ,_;:..I - 1; h’+1

!
< -24-(1-h) - E{ihi,, <0
This last inequality shows that T decreases when h; increases from 0 to 1 and that,
therefore, the minimum of T is achieved when h; = 1. Since hg = 1, we have shown

parl (a) of the theorem.

’

Assume now that A (Bj for some j > I, L. e
(k"“‘)/(l/ < A < 1/(1!1.

In particular, since k> 2, A 2 I/aj and A « (k—l)/uj__,. It follows from the above proof that

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 123
from which part (b) of the theorem follows directly. n

Theorem 7.4 states as a function of A, the initial cost for a partial search, the
optimal decomposition of the interval [0, 1] and the corresponding optimal average cost
CiX) to find the solution using the parallel implementation with k processes. In
Figure 7.3, we compare the cost CirA) with the cost C(A) of the original (sequential)

algorithm as presented in Section 2.

S

N
v
/ /
i
!
f
!
i
r

. ~ =

Tl k=4

' k=3

k=2

l .

0 ' + ' ! + + ot + + + e
0 0.2 0.4 0.6 0.8 1.0 1.2
A

Figure 7.3 - Relative speed-up of the parallel implementation

Since in the original «-& pruning algorithm the whole interval [0, 1] is searched at once,
C(X) can be obtained directly from equation (7.5) and is given by:

CA) = ¢(0,1) = A+1,

124 CHAPTER IV

The various curves of Figure 7.3 represent the speed-up SEA) = CAA)/C,(A) achieved by
the parallel implementation with k processes over the original algorithm for k = 2, 3, 4 and
for the limiting case k = . In this latler case 1/ay simply reduces to 0 and we always
have A C Ay, It follows from Theorem 7.4 that Co®) = A and therefore
A+l 1
SR = 5 - 1 +i-.

7.3.2 - Implications of the results and validity of the assumptions

Let us examine the results of the preceding section as illustrated in Figure 7.3. We
noticed earlier that the initial cost of a partial search, A, typically lies in the range
(0.2, 0.4). We observe from Figure 7.3 that when k =2, for example, the parallel
implementation can improve upon the original (sequential) «w-A pruning algorithm by a
factor which can be larger than 2 when A ties in the range of practical interest. Moreover,
when A becomes small, the improvement actually becomes unbounded, as can be seen by
choosing A - l/aj for which we have: §;0) = (“j + 1)/(j +2). An immediate consequence
of the results of Section 7.3.1, therefore, is that t'he o-f3 pruning algorithm (as described
in Section 2) is not oplimal. The same strategy used for the parallel implemel\tatlon with
two or more processes is obviously also suitable to the case of only one broc-ess, and, in a
similar fashion, we can deduce an optimal decom‘position of the interval [0, 1] for this case
as well. Although the results of Theorem 7.4 are not applicable for the sequential case
(only the first part of the proof is relevant when k = 1), simple calculus shows that when
A€ (0.2,04) an improvement between 15/ and 257 can be achieved over the original

algorithm, and this constitutes a substantial gain.

The analysis developed in Section 7.3.1 relies implicitly on the knowledge of the
distribution for the value Vg backed-up to the root of the game tree. In particular, when
we state, in Theorem 7.4, the optimal decomposition of the interval [0, 1] in terms of
{h,};50 wWe really need to know the distribulion of Vg to actually implement the procedure

SELECTNEWINTERVAL according to this optimal decomposition. When nothing (s known

PART 2: PARALLEL ALPHA-BETA PRUNING Al.GORITHM 125

about the distribution of Vos the results of Theorem 7.4 stating the optimal cost Cp) can
be simplyy reinterpreted as a lower bound on the cosl achievable by an algorithm using

this strategy of decomposition with partial searches.

In practice, however, although the distribution of Vg s not known exactly, some
iﬁfornmtion is actually available from the evaluation of the game tree at previous moves.
In chess, for example, unless an important capture was hidden from the horizon.of the
search, successive evaluations of the game tree will yield closely related values, and it is
common to be able to predict a priori an interval which contains the solution Vo with some
probability p, where, typically, p = 807. In the actual implementation of a chess program,
this interval is examined first, and, if the solution is not found after this trial, the whole
interval to its left (or to its right, depending on the outcome of the ﬁrsit search) is

examined next. See Figure 7.4 (a).

(a) Actual decomposition

1
0 3

U]

wWin
T

-

(b) Optimal decomposition (A = ﬁ)
Figure 7.4 - Comparison of the actual and optimat decompositions of [0,1]

Under these conditions, let us consider the cost of finding the solution Vo with I process,
and let us assume, lo give an idea, that X -~ 1/3. For purposes of comparison, the optimal
decomposition can be shown, in this case, to be hg =1, hy = 2/3 and hy = hy = .. = 0, see
Figure 7.4 (b), yielding the minimum cost To = 10/9 ~ 1.11, while the cost of the original

algorithm is simply given by T; =X + 1 = 4/3 ~ 1.33 (an increase of 207 over the optimal
1 .

126 CHAPTER IV

The cost associated with the actual decomposition is easily evaluated and is given

by:

T = pep) + xAepedrex) + (I-x-plA+p+tr+1-2-p)

= 2-p)X + p + x? (1-p-x)2,

from which we deduce that the worst case, achieved for x = 0 or » = 1 - p, is given by:

Ty = (@A+1) = A+ Dp + p?,
corresponding to T, = 1.24 when X = 1/3 and p = 0.8. Although this worst case still
corresponds to an increase of [1.67 over the optimal cost, it is an improvement of 77 over
the cost of the original algorithm. Yet, in view of the optimal case, one could think of.
.improving the cost by reducing the firsi interval so as to have p = 1/3, but then this would
increase the w;orst case, which would, in fact, cormspond.'m this case to the cost of the
original algorithm, therefore, showing no improvement. (Looking at the best case,
however, .w.e could achieve the optimal case in this way, but only with the risk of

aggravating the worst case.)

The results we have developed rely on several simplifying assumptions, and we
would like to conclude this section by examining their validity. While equations (7.2)
and (7.3) provide us with the exact cost of a partial search over some interval (v, R) (or
(@, b) equivalently), measured by the number of terminal positions examined during the
search, we have used the approximation given by equation (7.5) to derive the results of
Section 7.3.1. As we have mentioned, however, this approximation seems to be reasonable
and more and more accurate as the game tree becomes larger, and we do not feel that this
approximation leads to a large error in the analysis. In order to check on the validity of
this approximation, however, we have run a series of simulations and compared the results
with the results predicted by Theorem 7.4, where A was computed numerically by using a
least square approximation to the functions G(x) and H(x) on the interval [0, 1] (see
Figure 7.1). The simulation results were very consistent with the analytical results and
showed an actual improvement over the original algorithm between 57 and 107 better than

the improvement predicted by the theory.

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM : 127

The simulation was also aimed at verifying another simplifying assumption we have
used in the analysis. While equation (7.5) provides us with the unconditional average cost
of a partial search over an interval (a, b), what we really need to derive equation (7.6) is
the cost of a partial search over an interval (a, b) conditionned by the fact that the
solution lies in some interval (o', b') (possibly the same interval). Here, too, the

simulation results were useful o validate this simplifying assumption.

8 - Conclusions and open problems

We have presented in the first part of the chapter an analysis of the performance of
the «-f pruning algorithm for searching a uniform tree of degree n and depth d when the
values assigned to the terminal nodes are independent identically distributed random
variables. The analysis takes into account l)olh shallow and deep cut-ofls, and we have

also considered the effect of equalities between the values assigned to the terminal nodes.

A simple formula was derived, in Section 3, to measure the number of terminal
nodes examined by the oA procedure when the bottom values are drawn from a finite
range according to an arbitrary discrete probability distribution. Although the formula can
be easily computed numerically, a direct analysis is made difficult by the presence of the
probability distribution, In thé case when only two distinct values can be assigned to the
terminal nodes, it is shown that, by choosing appropriately their probability distribution,
the number of terminal nodes examined by the «-f procedure can grow at least as
Ol(n/An n)d], which, in fact, corresponds o the worst case behavior of the algorithm (over

all possible probability distributions).

A formula was then presented in the form _of an intégral to measure the number of
terminal nodes explored by the o-f8 procedure when the bottom values are all distinct. An
-analysis of the integral shows that the branching factor of the o~ pruning algorithm is
OnAn n), a rlesult which confirms a claim by Knuth and Moore [35] that deep cut-offs only

have a second order effect on the behavior of the w-# pruning algorithm.

128 : CHAPTER IV

We think that the main contribution of this analysis is to give a better understanding
of the «-@B pruning algorithm. In particular, we have shown lhat the a priori unrealistic
assumption that all the values assigned to the terminal nodes of a game tree be distinct
corresponds, in fact, to the worst case performance of the algorithm. Moreover, we have
shown that this worst case performance can be attained even in the very simple case when
the bottom values can only take on two distinct values, by choosing appropriately thé’tr
probability distribution. We think that this can be important in practice because, it is
relatively easy in most game playing programs to obtain (by inspection of the evaluation
function) an accurate bound for the range of distinct values assighed to the various
posilions of the game, but it is usually not so easy to derive a good estimate for the

probability distribution of these values.

Similarly, the branching factor analyzed in Section 5 provides us only with an
asymptotic measure of performance for the oA pruning algorithm (i. e., for trees of large
depth). As indicated by the results of Section 3.3, however, the branching factor can also

be used as a realistic measure of the worst case even for small trees.

We have measured the efficiency of the o-p pruning algorithm by the average
number of terminal nodes explored during the search. It would be interesting to also

obtain an estimate for the standard deviation of this number.

The scheme we have considered for assigning values to terminal nodes of a uniform
tree lent itself easily to analysis; it is, however, very simplistic. Different schemes for
assigning stalic values have been proposed in t23], [35] and [45]. Analyses of these
schemes would be helpful for various applications; a step in this direction waé: presented

in [45] for game trees of depth 2 and 3.

In the second part of this chapter we have investigated the possibilities of
implementing the «-A pruning algorithm in paratlel. Due to the intrinsically sequential

character of the algorithm, il seems difficult to achieve a high efficiency with a parallel

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 129

implementation based on a direct relormulation of the original algorithm. Rather than
having the processes search in parallel various subtrees of a game tree for the solution,
we have proposed, in Section 6, a parallel implementation in which the processes work
"mdopend(mtly by searching the entire game tree for the solution over disjoint
suﬁintervals. The idea is similar to the notion of aspiration level implemented

(sequentially) in the Technology Chess Program [24], [25].

In SectA'ton 7, we have developed an analysis of our parallel implementation of the
a2 pruning algorithm, and Theorem 7.4 states an optimal sequence of intervals (which
depends on the degrnrz k of parallelism, . e., the number of processes cooperating in the
search) for minimizing the average cost of the algorithm. It follows, in particular, that,
when lhe degree of parallelism k is small (k = 2 or 3), the parallel algorithm shows an
improvement over the original algorithm by a factor which is larger than k. A_surprlsing
consequence of the resulls, therefore, is that the w-f4 pruning algorithm is not optimal.
This fact has been confirmed through a series of simulations, and for a typical tree (with a
degree of about 30, and a depth of about 5) the results show that the «-A pruning
algorithm can be improved by 157 to 25/. Il is to be noted that these figures are very
consistent with empirical measurements of the Technology Chess Program [25] showing

that the implementation of the aspiration level reduces the search by 237.

The analysis we have developed relies on several simplifying assumptions, and it
would be interesting to develop a more accurate analysis, for example, by using a closer
approximation for the cost of a partial search, or by evaluating the cost of a partial search
over some interval (a, b) given that the solution lies in some interval (a ', b’). The analysis
could also l)fe refined by nol assuming that the processes cooperating in the search restart

new partial searches simultaneously.

Although the parallel implementation we have proposed appears to be efficient with
a small number of processes, the maximum speed-up achievable is limited typically to 5 or

6 (s;ee Figure 7.3 with k = ®). We feel that a belter way to implement in parallel the

130 CHAPTER IV

w3 pruning algorithm with a large number of processes would be to combine both the
strategy of decomposition we have proposed and the independent exploration of different
subtrees of the entire game tree. For example, we could have two groups of processes,
each group executing a partial search over a different subinterval, and each process in a
group exploring a different subtree, We think, however, that the results are. very
important and should be used systematically in é sequential implementation, in conjunction

with some dynamic evaluation of the probability distribution of the value of a game tree.

Chapter V

Experimental Results

with Asynchronous Multiprocessors

1 - Introduction

By simulaling a multiprocessor system, Rosenfeld [52] and Rosenfeld and
Driscoll [53]) have reported a series of results to measure the effectiveness of
programming an asynchronous mulﬂprocessor forv the solution of the Dirichlet /problem
using chaotic iterations [11]. The problem consists of solving the set of linear equations

associated with Laplace’s equation through the method of finite differences.

In this chapter, we describe a series of éxperiments in which various asynchronous
iterative methods (see Chapter 1lI) are impleménted on an asynchronous multiprocessor
(C.mmp under the operating system Hydra [63], [64]) to solve the Dirichlet problem. We
first present the results of measurements obtained with these experiments. We then show
how very simple techniques from order statistics (see, for example, [14]) and from
queueing theory (see, for example, [33]) can be used effectively to explain and predict

with a fair accuracy the experimental results.

In Section 2, we brief{y‘ describe C.mmp and Hydra, and we outline the solution of
the Dirichlet problem. In Section 3, we introduce the various asynchronous iterative
methods that we have implemented on C.mmp. In Section 4, we report the results of the
experiments, and, in Section 5, we present simple analytical_ techniques to account for

these experimental results. Concluding remarks are given in the last section.

131

132 : CHAPTER V

2 - Description of the experiments

In Section 2.1, we only present the main characteristics of C.mmp and of Hydra
which are relevant to our purpose here; a formal presentation of C.mmp is given in [63]
and of Hydra in [64]. Likewise, a full treatment of the use of the method of finite
differences for solving the Dirichlet problem can be found, for example, (n [22], and we

only briefly describe the method in Section 2.2.

2.1 - The environment

The following description corresponds to a very simplified version of C.mmp under
the operating system Hydra but will be sufficient to provide a reasonable model for our

experiments,

C.mmp is a multiprocessor composed of p processors (p is currently 16, but, at the
time the experiments were run, it was oscillating between 4 and 9), p; of those processors
are PDP-11 model 20 and P2 = p - pyp are PDP-11 model 40. For purpose of comparison,
we will ingiic:ate with the results the number and type of processors used in the
experiments. Those processors are connected to m memory blocks (each with IM words)
through an mxp cross-point switch; m is currently 16 (it was 13 at the time of the
experiments), but, since we are not limited by the size of the memory in our exberiments,
the exact value of m is irrelevant here. In addition, each processor is also connected to
its own local memory (4K words). Althouph the memory available is very large, because of
the small address field of an instruction (16 bits), only a small fraction (32K words) s
directly addressable by a process at a given time. The Hydra system, however, provides
the user with the facility of modifying the address registers in order to access the entire

memory,

The Hydra system also provides the user with a set of macro-instructions for the

manipulation of processes (creation, synchronization, etc.). In addition, the policy module

EXPERIMENTAL RESULTS 133

ensures some critical functions of the system (process scheduling, processor allocation,
etc.); in particular, it ensures that each active process receives its fair share of processor
time and a processor is allocated to a process only for some fixed quantum of time: at the
end of a quantum the processor is deallocated from the process, and the latter is put back

for re-scheduling into the pool of processes waiting for a processor,

2.2 - The problem

We consider a well-known problem, namely, the so-called Dirichlet problem for

Laplace s equation (see, for example, [22, Section 20.9)).

The problem is to solve the partial differential equation:
Uyy * Uyy = 0 (2.1)
v'm a recta;wgular domain D of R?: D = { (x,y) |0sxseo,0<y< B}, when values of u on
the boundary § of D are specified by the condition:
u = g, A ' (2.2)

for some given function g defined on §. Many applications require solving this partial

differential equation (or very similar ones) [22].

An approximation to the solution of equation (2.1) can be obtained through the
method of finite differences. Assume that & = (n+1)h and R = (m+{)h, and define a regular
grid on the domain D with mesh size h. This induces the set of points
{ M,-.’j (x‘-v_—.i.h,yjnjh) |0sisn+l,0< jsm+l) Let W j denote “(Mi,j)5 the values g
Upag,jp U0 and Wi e gs ON the boundary §, are known from equation (2.2). Using, for the
second order derivative v, at the point (x,y), the approximation

Uy (2,y) = [ulx+rhy) + u(x-hy) - 2u(x.,y)]/h2
and a similar approximation for u,yy(x,y,), it can be shown (see, for example,
[22, Section 23.4)) that a solution to the set of linear equations:

qu =0, Isisn, Isjsm, (2.3)

e N A S B Y |

gives an approximation to the solution of equation (2.1) for the points Mi,,j within an error

134 CHAPTER V

of order k3 (assuming bounded properties of the fourth 6rder derivatives of the solution

w). A piecewise linear approximation for the solution u on the domain D can then be

deduced from the solution of system (2.3).

The set of equations (2.3) constitutes a linear system for which we are investigating
the sotution. This system can be written, in matrix form, as:
Ax = a. (2.4)
When z is the nm-vector corrnsponding to the row-major ordering of the grid points:
x = [u.1’,, o Uy gy U 9 e “n,m.]r ,
we deduce from this ordering the nm«nm-matrix A and the nm-vector a of eq;»atlon (2.4),

the latter being known from the values of the function g giving the boundary conditions.

Different iterative schemes have been (mblemented on C.mmp to solve this system.

They are described in the following section,

3 - Some implementations of asynchronous iterations

The matrix A of equation (2.4) is a very sparse matrix (at most five elements are not
zero in any given row), and, in this case, iterative methods, although they do not provide

us with the exact solution, are usually advantageous.

The first two methods we have considered are two basic iterative methods: the
point Jacobi and lhe Gauss-Seidel’'s methods. These two methods have been widely
studied and will be useful as a basis of comparison. These and other iterative methods
“that wé have implemented are described in the following sections. Throughout, we discuss
parallel implementations with k processes (k = 1 corresponding to a sequential
implenmntat{ion), and, for éimplicily, we assume that the size nm of the matrix A is a
‘multiple of k and let q = nm/k. In all implementations, we make use of a global vector,

called X, to contain the current value of the solution vector.

EXPERIMENTAL RESULTS 135

3.1 - Jacobi's method and Asynchronous Jacobi's method

Since all diagonal elements of the matrix A have the same value of 4, thei point
Jacobi matrix is readily obtained. Let z(i) denote the i-th iterate computed by Jacobi's
method. We simply deduce from equation (2.4) that:

x(i+1) = (1—%/1) (i) 4 ﬁa = Bxli) + b.
The matrix

B = 1I- -}3 A
is the Jacobi matriz associated with our problem. This matrix has been extensively
studied, and its spectral radius, which determines the rate of convergence of Jacobi’s
method, is given by: |

pB) = 1 (cos Jp + cos 5Ep). ' (3.1)

We see that with Jacobi’s method all components of an iterate are .c:omputed
simultaneously using the values of the previous iterate, and that parallelism can,
therefore, be introduced easily. A natural parallel implementation with k processes is to
simply decompose the evaluation of an iterate into k subcomputations, -.each one
corresponding to the evaluation of a subset of q = nm/k components, and to have the k
processes carrying out the evaluation of the k subsets of componenis in parallel, When a
process completes its (fomputat'ton, it must then block itself and wait until the completion
of all other subcomputations before starling the evaluation of the next iterate. Our
implementation corresponds lo th'lsAdosc,riplion, 'm‘whic.h process P, always evaluates the
first g components of the iterate, process P, the next ¢ components, ... and process Py the
last g éomponents. After each subcomputation all processes synchronize _thems.elves using
a semaphore, and, after hailing updated the components, they all resume their executions
for the evaluation of the next iterate.

The complete synchronization of all processes at each step of the iteration is an
evident drawback in the parallel implementation of Jacobi’s method, and we can anticipate

that this will result in a substantial overhead. The Asynchronous Jacobi's method (or AJ

136 CHAPTER V

method) is a variation of Jacobi’s method in which a process never waits for the other
processes to complete their computations. As soon as a process completes the evaluation
of its 'subs;ot of components, it releases the new values for the other processes by
updating the corresponding components of the global vector X, and, immediately after, the
process starls re-evaluating its subset, using in the computation, the values of the
‘components as they are known at the beginning of the re-evaluation. The AJ method has
been implemented using a critical section for updating the companents of the global vector
X at the -end of an evaluation, and for copying the components of X required for the next

evaluation.

It can be seen easily that, if a process is never suspended indefinitely, the Al
m’et‘hod can be expressed as an asynchronous iterative method relative to the linear
operator corresponding to the Jacobi matrix B. Since B is a non-negative matrix with a
spectral radius less than unity, it is a contracting matrix, and the convergence of the AJ

method for our problem is a direct consequence of the results of Chapter 1il.

3.2 - Gauss-Seidel's mathod and Asynchronous Gauss-Seidel's method

Gauss-Seidel’s method differs from Jacobi's method in that the components of an
iterate are eValuated in sequence and the value of x.(i) is used in the computation of (i)
when s > r (that is, as soon as it is available). Let L and U be the strictly lower and upper
triangular matrices detined from:

B=I—:1’-A=L,+U.
The sequence of iterates, for Gauss-Seidel’s method, satisfies:
£G+1) = LxGs1) + Uzl + b,
The matrix
L = a-tu
defines x(i+1) directly as a function of x(¢). Its spectral radius determines the rate of

convergence of Gauss-Seidel’s method and is given by:

p(L) = [pB)°, (3.2)

EXPERIMENTAL RESULTS 137
where p(B) is the spectral radius of- the Jacobi matrix and is given by equation (3.1).

We nolice that Gauss-Seidel’s method is intrinsically sequential, and that parallelism
cannot be easily introduced. The method has been implemented sequentially (L. e., with {

process) as a particular case of the Asynchronous Gauss-Seidal’s method, '

The Asynchronous Gauss-Seidel’'s method (or AGS method) s similar to the AJ method
except thal a process evaluates the components in its subset sequentially and uses the
new value of a component within the same subset as soon as it becomes available. In this
respect, the AGS method resembles Gauss-Seidel’'s method for the computation within a
subset of components, and, in particular, when the AGS is implemented with only one

process, it simply reduces to Gauss-Seidel’s method.

As in the case of the AJ method, the AGS method can be shown to correspond to an
asynchronous iterative method relative to the Jacobi matrix B, and, in this case too, the
convergence of the AGS method follows from the results of Chapter Ill since the matrix B

(in the particular case of our problem) is a contracting matrix.

3.3 - Puroly Asynchronous iterative maethod

The Purely Asynchronous method (or PA method) is the simplest method we have
implemented. It basically resembles the AGS method, but it uses no critical section for
releasing the values of the c:ompoﬁents in its subset of for copying the values of the
componclnts required lin the corﬁputations. Rather, a process fetches directly from the.
global vector X the values of the components as they are needed and releases new values
of the components one by one, immediately after the evaluation of each component. Again,
the PA method can be easily expressed as an asynchronous iteration relative to the linear
operator corresponding to t;m contracting matrix B, and the convergence of the PA method,

for our problem, follows directly from the results of Chaptér 1L

In addition to being the simplest method to implement from a programming point of

138 CHAPTER V

view, the PA method is also, spacewise, the most efficient method since no ex‘tra variable
is required to copy the values of an iterate as of the beginning of an evaluation or to
contain the new values of the components before being released. The main advantage of
the PA mr:timd, however, is the total absence of any form of synchronization, whi(;h,

therefore, makes it very attractive for implementation on an asynchronous multiprocessor,

An apparent disadvantage of the PA method is that all processes frequently access
the common global vector X, therefore possibly causing memory conflicts. This is not so
for the particular problem we are considering in case of a large system of equations (t. e,
for large n and m). Because of the sparsity and the special form of the matrix associated
with our system, accesses to the vector X by a given process will be mostly confined to’
accesses of components within its own subset and only a few accesses to companents in
the two adjacent subsets. Moreover, this is the general case for the solution of linear
systems resulting from the application of the method of finite differences to partial °
differential equations. Therefore, this apparent problem can be solved easily simply by
allocating different memory banks to differents subsets of components of the global vector

X.

Another problem with the PA method is specific to C.mmp (and Cm*) and is' due to
-the absence of uninterruptible double word instr.uc.tions on the PDP-11 (or the LSI-11). In
particular, since a floating point number is implemented on two consecutive 16 bit words,
simultaneous updating and reading of the same component by two processes might result
in a lost of precision of the last 16 bils of the mantissa. Although this problem is very
unlikely to occur, it is real, and the precision achievable on the solution vector has to be

chosen accordingly.

3.4 - Other possible implemantations

The methods we have introduced are intended to be an illustration of the issues

raised by the implementation of parallel algorithms on an asynchronous multiprocessor,

EXPERIMENTAL RESULTS 139

and they are not necessarily the most efficient way to solve a linear system of equations
by iteration. In this section, we mention several technigues which should be used in the.

practical implementation of asynchronous iterative methods.

3.4.1 = Asynchronous iterations with relaxalion

The introduction of a relaxation factor is a well known technique for improving the
performance of iterative methods, and, although we do not report here any results
concerning iterative methods using relaxation, we have run some experiments which show
that the introduction of a relaxation factor is a very promising way to accelerate

asynchronous iterative methods,

Let £ be an operator, and let w be a positive scalar. An iteration relative to F with
the relaxation factor o defines the sequence of iterates through:
x(i+1) = @ F 2(i) + (1-0) x(i).
In particular, when o = 1, this corresponds directly to the iteration relative to £. This
technique (s very useful, in general, since the relaxation factor « can be chosen to

maximize the efficiency of the tteration.

As par!icular cases, let us examine the methods we have implemented. The Jacobi
Over-Relnxation method (or JOR method) produces fhe sequence of iterates defined by: |
2(i+1) = o[- .};m 2(i) + éa]+ (-0) 2,
and, therefore, corresponds to Jacobi's method with the Jacobi matrix:

B

o = I—-‘,;QA = 0B + (1-) 1.

It follows that, in our case,
pB,) = |1-0] + o p@B),
therefore, w = I minimizes p(B), which means that Jacobi’s method cannot be improved

using relaxation.

The Successive Over-Relaxation method (or SOR method) is derived from

Gauss-Seidel’s method. The SOR method defines the sequence of lterates:

140 CHAPTER V

x(i+1) = o[L x@s1) + Ux@) + b] + (I-0) x@(),
and it can be shown (see, for example, [62, p. 203)) that the spectral radius of the SOR
matrix

L, = (I- o (1-0) + oU]

is minimized when:

0 = -—-—-~2-——7~»-.
1+ J1-p“(B)

Similarly we can define the AJOR, ASOR and PAOR methods from the AlJ, AGS and PA
methods, respectively. All three methods are easily shown to correspond to asynchronous
iterative methods relative to the linear operator associated with the matrix B . In
particular, since

PB I = |1-0| +vm pB),
_provided t'hét:

0 < 0 < (3.3)

2
1+pB)’
the matrix B, is a contracting matrix, and we are guaranteed of the convergence of all
three methods tn the particular case of our prablem. Nothing, however, is known in
general as to the best o, and further results in this direction would certainly be of

interest. Note that condition (3.3) only represents a sufficient condition for convergence,

and that the methods can still converge outside of this range.

3.4.2 - Adaptative asynchronous iterations

All of the implementations that we have proposed are based on a static
decomposition of the computation involved in the evaluation of an iterate, and, in all cases,
each process is assigned to the evaluation of a fixed subset of components. With Jacobi’s
method, this results in a substantial overhead since all processes have to wait for each
other at the ‘end of each step of the iteration. A possibility for reducing this overhead is
to decompose the components of an iterate into more subsets than processes, and to let

the processes adjust their own speeds by evaluating more or fewer subsets of

EXPERIMENTAL RESULTS ‘ 141

companents. For example, the parallel implementation of Jacobi’s method with 2 processes
which seems the best suited for execution on an asynchronous multiprocessor is to have
one process update the components starling with the first one and to have the second
process update the components starting with the last one; an iteration step terminates
when the two processes meet (not necessarily exactly in the middle). With this
implementation, the difference in execution times between the two processes is limited at
most to the time to evaluate only one component, which obviously reduces significantly

the waiting time.

Another way to take into accopnt the different speeds of the processes would be to
subdivide the components into subsets of different sizes, and assign the'compuiation of a
larger subset of components to a faster process. The speed of a process, however,
depends mainly on the speed of the processor on which the system decides to execute the

process, and this ts usually nol known a priori.

There is another advantage of nol pre-assigning to a process the evaluation of a
fixed subset of components since, at each step of the iteration this allows for some
flexibility in the selection of the subset to be evaluated next. Many criteria can be used
for this selection, in particular;

(1) LRU: the subset selected is the one which has been the Least Recently
Updated among those not currently updated.
(2) GRE: the subset selected is the one which carries the Greatest Relative Error
(also among those which are not currently updated).
‘The GRE selection, for instance, should increase the efficiency of an iterative method by
reducing the number of iterations required to achieve some given admissible error. The
selection of a new subset at each step of the iteration might, however, introduce
‘additicmal‘o‘verhead and, in particular, will almost necessarily require the use of a critical
section. We do not think that this should be used, therefore, in conjunction with the PA

method.

142 CHAPTER V

3.5 = Organization of the program

Before presenting the results we give a brief description of the programs. All of
the different methods have been implemented in BLISS-11 [15] and all programs have

basically the same following structure.

Master process: Computational process i
Inttialization: read in n, m, ¢, k; P{mutex);
for i = I, ..., k do Read all necessary components of X;
Create and start process i; Vimutex);
for ¢ = 1, .., k do repeat
P(complelion); Evaluate all components of subset i;
Output the statistics about the run; P{mutex); ‘
Update all components in subset i;
, A Read all necessary components of X;
Vimutex);
until global error < ¢
V(completion);

The method implemented by this program is embedded in the instruction "Evaluate
all components of subset i." From the program each process can be thought of as a
succession of identical eycles; each cycle being composed of an evaluation section tollowed

by a critical section.

The programs for Jacobi's method and for the PA method are slightly different but

follow basically the same structure.

4 - The results of the experiments

We report, in this section, the measurements obtained by running on C.mmp the
various iterative methods that we have introduced in Section 3. We discuss, in
Section 4.1, the different paramelers of the program and the decisions leading to their
choices. In Section 4.2, we present the local behavior of the processes within each cycle,

and, in Section 4.3, we present the global results and compare the different methods.

EXPERIMENTAL RESULTS 143

4.1 -~ Choice of the paramoters

All of the experiments have been run under the same conditions, and, before
presenting the results of the measurements, we briefly discuss below the choices we have

made for the various parameters of our problem. .

'4.1.1 - Size of the system

We want to choose the size of the system to be solved (i. e., to choose n and m)
large enough so that the problém be realistic, but, on the other hand, since we do not-
want to deal here with problems of memory addressing, we have limited ourselves to a
size that permits all of the data to be directly addressable. The main restriction, in this
c:és;e, comes from the fact that the size of the data local to a computational process has to
fit into the stack of local variables (contained in page 0), i. e., in about 3K wbrds. With
the AJ method, for instance, each process has to have the values of the components it is
updating and a copy of the values of the components used in the evaluation, as of the
starting time of the computation. There may be up to 2nm elements each of which fits into
two words of memory., Therefore nm has to be chosen below 700. The number 504 has
been chosen (mainly because 1t is divisible by 1, 2, 3, 4, 6, 7, §, 9 ... and almost by 5 too!),
and n and m have been chosen to be 21 and 24, respectively, in the series of experiments

reporied here.

4.1.2 - Error of the solution vector

An experiment is stopped when some norm of the error vector is smaller, in

’

magnitude, than a given admissible error ¢. (The norm we have chosen is ||| .., the

!

maximum over all components.) Since we want to be able to compare the experimental
results with the results of a theoretical analysis, we want to choose ¢ small enough so that
asymptotic rates of convergence can be estimated through experimental results. For our

purposes, the asymptotic rate of convergence for a method 77 can be defined as:

log lle,
RM) = i - 2Bl (.1)
(3) [

144 CHAPTER V

where ¢; is the error vector after the i-th sub-iteration (a sub-iteration corresponds to an
evaluation by one process so that k sub-iterations are carried out slmultaneouﬁ:ly in a
paraltel implementation with k processes), and where r; is the mean number of times each
component has been evaluated up to the i-th sub-iteration. For all the. implementations
we have considered the components are divided into k equal subsets, and n; ts.élmply
given by n; = i/k. (The norm in equation (4.1) is the same norm as the one used in the
termination criterion.) This definition of asymptotic rate of convergence corresponds to

the classical definition and, in particular, we have R(Jacobi) = -log p(B).

The interpretation of the rate of convergence is that 1/R(72) is an asymptotic
measure of the average number of times each component has to be updated in order to.
decrease the norm of the error vector by a factor of 10 (if the log of equation (4.1) is base
10). In particular, when ¢ tends to 0, the average number of iterations (per component)
required lo solve the system with an error less than ¢ grows linearly like -log(e)/R(72).
In Figure 4.1 we have plotted the number, N(¢), of iterations required to solve our system
(n = 21, m = 24) within an error ¢, versus -log(e) for both the Al and the AGS methods
when K =1 and 3 processes are used. This shows clearly that the asymptotic rate of
convergence is reached very ‘fast_since, when -log(e) > 0.25 (i. e., € < 0.56), N(e) varies

linearly with -log(e).

When k ~ I the AJ and AGS methods reduce to Jacobi’s and Gauss-Seidel's methods,
respectively, and the slopes obtained from Figure 4.1 can be compared to the theofetical
values [-log p(B)]"I and [-log p(.C)]"I, respectively, where:

p(B) = é((:os ik ¢+ cos wy) ~ 099097,
p(L) = [p(B)Y ~ 098202 .
In Table 4.1, we reporl the observed and theoretical number of iterations required to

asymptotically divide the norm of the error vector by a factor of 10.

EXPERIMENTAL RESULTS 145

Nie)
as0 + Al (k = 3)
/%- AJ (k= 1)
400
350 + ,
300 -+

250 4 k=3
- AGS ()
-
‘/” AGS (k = 1)
200
150 -+
100 +
50 +
0 t } ¥ t + t ~+ ¢ } t + + t } t
0 0.25 0.5 0.75 i 1.25 1.5 1.7%
- log(e)

Figure 4.1 - Number of iterations required with the Al and AGS methods

Al AGS
k=1 k=3 k=1 k=3
Observed: 254 257 127 143
Theoretical: 25479 - 127.89 -

Table 4.1 - Comparison of the rates of convergence for the AJ and AGS methods

In alt the experiments reported below, the lermination criterion uses ¢ = 0.1 for the
value of the admissible error. This value corresponds to a reasonable execution time, in

the order of 3 min,, and allows us to base our measurements on more experiments.

146 : CHAPTER V

4.1.3 - Other paramelers

Since we are mainly interested in comparing the different methods with respect to
their rates of convergence toward the solution vector, we simply set the displacement
vector b to be 0 so that the solulion is known to be ¥ = 0. As the system we are studying
is lir‘wea‘r, we do not loose any generality, but this will result in a simpler tgst for the
termination criterion since, in this case, the current iterate (s exactly the error vector.
Lastly, in all the experiments, the initial approximation has been chosen as the vector with

all components equal to 1.

4.2 - Local behavior of the program

We present, in this section, the local behavior of the computational processes by
looking at the time they spend during each cycle in the evaluation section and (except
with the PA method) in the critical section of the program. In Section 4.2.1, we present

the results of the measurements, and, in Section 4.2.2, we give an interpretation.

4.2.1 - Results of the measurements

’

The results presented in this section have been derived from the information given
by the tracer. David Lamb implemented on C.mmp. (Among many other things, each P and v
operation is reported by the tracer along with the time instant when it was executed, the
process executing the operation and the processor carrying out the execution.) Since the
code of the programs for the different methods are identical (with respect to these
measurements) we limiled ourselves to take measurements on the AJ method. Four
experiments have been run with k =1, 3,6, and 12 processes. In all of them p =7
processors were available: 5§ PDP-11/20 and 2 PDP-11/40. The histograms for the
distribution of the time spent in the evaluation section as well as the distribution of the
time spent in the critical section, f.or each of the experiments, are plotted in Figures 4.2
through 4.9. (In the case of the critical section, the results presented in these figures also

include, when k > I, the possible waiting time before entering the critical section.)

EXPERIMENTAL RESULTS 147

Frequency %

40 +

20 -+

o I

0' i i 3 P a [ll\ilxulll :i

v T R ¥ T

0 300 600 900 1200 1500 1800

Time (ms.)

Figure 4.2 - Time spent in the evaluation section (k = 1)

Frequency %

50 +

a0 +

30 +

20 +

10 +

0 + | : + |)e L 5'”’

o 10 20 3o 40 50 60 70

Time (ms.)

Figure 4.3 - Time spent in the critical section (k = 1)

148

Frequency 7

CHAPTER V

20 +
15
10 +
|
5 1 i
o ' p—t l | l : l t ”"'l‘l"“ =t
0 150 300 450 600 750 300

Time (ms.)’

Figure 4.4 - Time spent in the evaluation section (k = 3)

Frequency 7%

20 ¢+
15
10 +
1.
. ‘H ll
0" } 1 l el’rl"'lgl‘i 11} L1 [ljl
0 10 20 30 40 50 60
Time (ms.)

Figure 45 - Time spent in the critical section (k = 3)

" EXPERIMENTAL RESULTS 149

Frequency 7%

",

-+~

Time (ms.)

Figure 4.6 - Time spent in the evaluation section (k = 6)

Frequency 7%

12
10 }+ l
8.H
6 - [l
4 - hlll
2+ il .”/‘II
B o, .

('I'[‘h‘ I“lf”l[l, '

0 ot t t { t +

0 10 20 30 40 S50 6d
Time (ms.)

Figure 4.7 - Time spent in the critical section (k = G)

150

Frequency %

CHAPTER V

lll[l[

Al ¥

250 300

Time (ms.)

Figure 4.8 - Time spent in the evaluation section (k = 12)

Frequency 7%

6 IH
. | 1l
il |
2 - , lll
, | I
| TR A
0 50 10 250 300
Time (ms.)

Figure 4.9 - Time spent in the critical section (k = 12)

EXPERIMENTAL RESULTS 151

These figures show clearly that two different types of processors are used. When
k = 3, for example, the distributions have two main peaks (at about 18 ms. and 28 ms. in
Figure 4.5), and, in particular, we can derive from our results an estimate for the relative
speeds of the PDP-11/20 and the PDP-11/40. The ratio of the speeds is certainly
problem dependent but, in our case, Isecond on a PDP-11/40 corresponds to about
1.4 seconds on a PDP-11/20, i.e., the use of a PDP-11/40 instead of a PDP-11/20
corresponds to a gain of about 307 in running time. If we look more closely, we can see
that each main peak is composed of several subpeaks corresponding to each processor;
two different processors, even of the same type, actually have different speeds. This is
particularly evident in Figures 4.2 and 4.3, where the two main peaks correspond to the
executions on each of the 2 PDP-11/40. Since it is the policy of Hydra to allocate first
the PDP-11/40, the third peak in Figure 4.2 does not correspond to to an execution on a
PDP-11/20 but, in fact, corresponds to executions on a PDP-11/40 which include some

overhead due to the re-scheduling of a process at the end of a quantum.

422 - An interpretation of the results

The main statistics about the distributions presented in the figures of Section 4.2.1
are collected in Table 4.2 (a) and (¢) for the evaluation section and the critical section
'('mclud'mg lhe possible waiting time), respectively. In addition, Table 4.2 (b) contains the
same statistics concerning the c"itic:al section by itself, excluding any waiting time. (Al

timings in the table are expressed in ms.)

In Figures 4.10, 4.11 and 4.12, we have plotted the variations of the average
execution times for the two sections of the program as they can be found in
Table 4.2 (a), (b) and (c), respectively. The results of Figure 4.11 represent strictly the
execution lime of the critical section, while the timings presented in Figure 4.12 also

contain the possible waiting time before entering the critical section.

152

CHAPTER V

k=1 k=3
Minimum 1123.85 348.30
Maximum 1889.60 1524.13
Averape 1292.72 534.35
Standard dev. 13651 118.88
Coeff. of var, 0.106 0.222

(a) Evaluation section

k=1 . k=3

Minimum 43.49 16.82

Maximum 174.82 186.02

. Average ‘ 47.75 23.96

Standard dev. 13.91 11.71
Coeff. of var, 0.291 0.488

k=6 k=12
239.36 100.07
834.97 502.02
423.04 187.86
0.199 0.251
k=0 ketz
170.96 21.91
21.65 1157
7.67 2.77
0.354

0.240

(b) Critical section (without the blocking)

k=1 k=23
Mintmum 43.49 16.82
Maximum 174.82 199.64
Average 47.75 25.63
Standard dev. 13.91 13.90
Coeff. of var, 0.291 0.542

k =06 k=12
1359 7.44
196.97 431.65
27.81 177.04
17.67 48.35
0.635 0.273

(¢c) Critical section (including the blocking)

Table 4.2 - Statistics about the two sections of the program

Time (ms.)

1200 -

1000

800 +

600 -}

400

200

-
-

$ [l [l 4
Al T T v

9 10 11 12

Number of processes

Figure 4.10 - Mean time spent in the evaluation section

EXPERIMENTAL RESULTS ' 153

Time (ms.)

50 +

a0 + \
30 + \

20 ,
10 *
0 } } } } —t } } + — } }

0 |) 3 4 5 6 7 8 9 16 11 12

Number of processes

Figure 4,11 - Mean time spent tn the critical section (waiting time excluded)

Time (ms.)

200 -+

s

100 + _ yd

50 T ..

0 I '\ Il I } }) } il i Il i
N ¥ Al A\j T LI T T \ T A\l T A\l

0 | 2 3 4 5 6 7 8 9 10 11 12

Number of processes

F‘igure 4,12 - Mean time spent in the critical section (waiting time included)

We note that, while a process does not suffer a very important delay (before the
critical section) in the parallel implementation with k = 3 and 6 processes, Figure 4.12
slﬂows a very sharp increase in the waiting time for k = 12. In fact, further results
obtained by tracing the execution of the program showed that, in the parallel

implementation with 12 processes, the queue to the critical section contained almost

154 CHAPTER V

always 6 or more processes (not counting the process executing the critical section). This
means that there has almost always been at least one processor idle among the 7
processors available. The fact that the processes are never competing for a processor
can, therefore, explain the steady decrease of the execution times presented in
Figures 4.10 and 4.11. In both cases a first approximation can be obtained in the form
a + ‘1 b, for some appropriate constants a and b. Howevér, since it will be useful in
Section B, we develop below a closer approximation which takes into account the policy of

Hydra to allocate first a PDP-11/40 (i. e., a faster processor).

Let p; and p, be the number of PDP-11/20 and PDP-11/40 available, respectlyg,L-){,;-.
and let p = p; + p;. We denote by p the relative speeds of the two types of processors;
experimental evidence, from the results of Section 4.2.1, showed that p ~ 1.4 corresponds’
to a reasonable estimate in the particular case of our problem. Consider a program which .
requires an average time x when it is execuled on a PDP-11/40, and let x; be the average
execution time of the same program when it is executed in an environment with &
processes (each process is assumed to receive its fair share of computing power).. Firstly,
when k s p,, a PDP-11/40 is allocated to the process, and its actual execution time is,
therefore, simply given by:_

xy = % if k<py. .. (4.2)
Next, assume that p, < ks p = py+ py. In this case, the process is allocated a PDP-11/40

the fraction F—;Z of the time, and it is allocated a PDP-11/20 the fraction ,:;2 of the time.

k-
. - .xecution ti ibutes to 157P2, P2y
This means that ! unit of actual execution time contributes to 7 —k—~+ T units of
(PDP-11/40) time toward the total time x. We then have:
p-k .
D T R — x U py<ksp=pp+ps. (4.3)
k k- Py * by 2 1 2

Lastly, if k> p = py+ py, lel us assume, as it is evidenced in the experiments, that the
processes are not in competition for a processor (i. e., at least k-p processes are always
waiting for entering the critical section). With the same argument as above, we find, in
this case, that:

£-P

2, = —————2x f k>p=pp+p,y. (4.9)
KT Ty g+ P2

EXPERIMENTAL RESULTS 155

This shows that, in each of the three cases, the average execution time =x;, can be
expressed as:
xk = x.pk,

where the factor ¢, is deduced from equations (4.2), (4.3) and (4.4).

We can now find an approximation in the form (e + b i—)) for the average execution

times of the evaluation section and of the critical section in the implementation with k

processes (denoted by & and ¢y, respectively). We determine the values a and b using a
least square approximation lo the values in Table 4.2 (a) and (b). We find that:

£, = (82.89 + 1207.73 ’%) Pk s (4.5)

e = (7.972 + 39.907 ,%) P - (4.6)

Using py = 5 and p, = 5 (and p = 1.4) in the evaluation of the factor ¢,, we find that, for

k=1,36 and 12, lhe values obtained from equations (4.5) and (4.6) are consistently

within 157 of the experimental results. In addition, these lwo equations provide us with

some estimates for ¢y, and ¢ which are a useful complement to the values of Table 4.2, for

other values of k.

4.3 - Global rasults

In this section, we report the global measurements of the parallel implementations
with k proce;ses for the iterative methods that we have presented in Section 3. Jacobl's,.
the AJ and the AGS methods have been implemented on C.mmp with a configuration of
p = 6 processors (4 PDP-11/20 and 2 PDP-11/40), and all the experiments have been run
with k = 1, 2, 3, 4. 6, 7, 8 9, 12 and 14 processes. The PA method has only been
implemented later, by Raskin [48], on Cm* [59] (along with the first three methods), and
the results we present below for this method are the results of his measurements. A
comparison between the results of C.mmp and of Cm* for the three other methods showed
a ‘complr-:te agreement, and we have normalized the timings of the PA method so that it

coincides with those of the AGS method for the implementation with | process (since, in

156 CHAPTER V

this case, both methods reduce to Gauss-Seidel’s method). The configuration of Cm*
included 8 processors (LSI-11) at the time of the experiments, and the PA method has been
implemented with k = 1, 2, 3, 4, 6, 7 and 8 processes. (The results corresponding to 7 and
8 processes cannol be compared with the results obtained on C.mmp, and they are

indicated with dashed lines in all the figures.)

In Figure 4.13, we present the total running times for the various methods as a

function of the number of processes used in the parallel implementation.

Time (sec.)
400
350 +
300 + °
250 +
_——* Jacobi
200 + L .
S \.VA_‘,,,/""—"A cme st .
150 + AN N et A
N e e
.
100 AGS
N T e . JRRUUTOORREEEE 2
\‘\
50 e -
T e . PA
0 4 } } 4 } } } } } } } } 4 } }

-0 1 2 3 4 S 6 7 8 9 10 11 i2 13 14 15
Number of processes

Figure 4.13 - Total execution times with Jacobi’s, the AJ, the AGS and the PA methods

This direct comparison is somewhat "unfair” vis & vis Jacobi’s and the AJ methods
since we know that, for the particular problem we are considering, Gauss-Seidel’s method

is already twice as fast as Jacobi’s method. In Figure 4.14, we have reported the relative

EXPERIMENTAL RESULTS } 157

variation of the running time (L. e., t /t, where t; is the running time when k processes

are used). This is also a measure of the speed-up achieved in using k processes.

Speed-up ratio

6 4
5 -
4 .
3 .
— - e YA
Ce AGS
2 R - RS R
. —~a Jacobi
1 .
0 { + 1 { { t } { \ } } 4 }
0 1 2 -4 K] 6 7 8 10 11 12 13 14 15

Number of processes

Figure 4.14 - Relative improvements with Jacobi’s, the Al, the AGS and the PA methods

Figure 4.14 shows clearly the effects of using the different forms of synchronization

in a parallel algorithm. Due to the full synchronization of all processes at each step of

the iteration, Jacobi’s metlhod exhibits the worst behavior of all four methods, while the

PA method, which uses no synchronization at all, achieves an almost optimal speed-up.

Although the Al and AGS methods are very similar in nature, Figure 4.14 shows that

the speed-up ratios achieved by the two methods differ substantially. This difference is

‘mainly due to the fact that the total number of iterations increases only slightly with the

number of processes for the AJ method, while the increase is more important for the AGS

158 CHAPTER V

method. This is illustrated in Figure 4.15 where we have plotted the number, N(k), of

iterations required to solve our system using k processes as a function of k.

N(k)
3so + TS N
N] .) ’ 'S [e LA - . . JaCObi
250 + -
B I RS
e .]

1s0 4 L7

4
0 f S S S S—

0 1 2 3 4 S5 6 7 8 9 10 11 12 13 14 15

Number of processes: k

Figure 4.15 ~ Number of iterations required to solve the system

Figure 4.15 shows that for the Al, AGS and PA methods N(k) increases regularly
(and almost linearly) with k. This difference with respect to the sequential method
(Jacobi’s or Gauss-Seidel’s method) is one of the factors that determine the total running
time of the various methods, but, obviously, the presence (or absence) of synchronization
ts anolher important factor. When the number of processes increases, a critical section,
for instance, acts as a bottleneck, which tends to decrease the parallelism and increase the

total execution time. In the next section, we proceed to the evaluation of this factor.

5 - On the analysis of algorithms for asynchronous multiprocessors

We want to illustrate in this section that the analysis of parallel algorithms for
asynchronous multiprocessors can benefit from techniques developed in the framework of

other general theories. We show that some simple results of order statistics (see, for

EXPERIMENTAL RESULTS 159

example, [14]) and of queueing theory (see, for example, [33]) can be used effectively in

the analysis of algorithms for multiprocecsors.

As examples of multiprocessors algorithms, we use in this section some of the
asynchronous iterative methods described in Section 3. We use the parallel
implementation of Jacobi's method (Section 3.1) vas a typical example of a synchronized
algorithm,, ahd we use the Al and AGS methods (Section 3.2 and 3.3) as typical examples of
asynchronousl algorithms in which communication takes place through the use of a critical

section.

The evaluation of the performance of an asynchronous iteration depends principally
on two main factors. The number of iteration steps required to solve the system of
equations within some given admissible error ¢ is one of the important factors which
determine the global running time of an iterative method. This number can be derived
through the tools of numerical analysis, and we will not be concerned with its evaluation
in this section We will simply use the empirical results observed in the experiments
themselves. (Upper bounds on the number of iteration steps for various asynchronous
iterative methods have been derived in Section 6 of Chapler IIl. In the case of Jacobi’s
method, the exact number of iterations can, in fact, be derived from the theory.) The
(average) time for each process to execute a complete cycle (L. e, from the instant it starts
an evaluation to the instant it starts the next evaluation) is another important factor

contributing to the global running time. This factor is evaluated in the present section.

We assume throughout that the execution times for the evaluation section by all k
processes are independent identically distributed random variables distributed according
to the probability distribution I, associated with the density function fio Let z) and oy
denote their mean and variance, respectively. Similarly, we assume that the execution
times for the critical section by all k processes are independent identically distributed
random variables distributed according to the probability distribution Gy, associated with

the density function g,. Let ¢, denote their mean. Estimates for the quantities ¥ and ¢y

160 CHAPTER V

are given in equations (45) and (4.6); an estimate for the quantity oy can be derived

similarly,

In Section 5.1, we consider Jacobi's method and, in Section 5.2, the AJ and AGS
methods. The results derived in these two sectiohs are compared, in Section 5.3, with the

experimental results.

5.1 = Synchronized algorithms

It follows from our parallel implementation of Jacobi's method that each process
cooperating in the evaluation of an iterate has the cyclic behavior depicted in the diagram

of Figure 5.1.

Evaluation Waiting Waiting Critical

-.._
-~
-+

section section section section

part 1 | part 2

Cycle
Figure 5.1 - Cyclic pattern of a process with Jacobi’s method

The first waiting section is due to the full synchronization of all processes at the end of
‘the evaluation of an iterate and before the evaluation of the next iterate. The second
waiting section is simply due to the.presence of the critical section used for updating and
reading the values of the components of the current iterate. (A process might have to wait
if another process is already executing the critical section) The average time t, to
execute a complete cycle in the_ parallel implementation with k processes can, therefore,
be decomposed as:

| ty = aj by, B
where aj and by are the average execution times for the first and second parts of the

cycle respectively.

EXPERIMENTAL RESULTS : 161

Let us first consider the quantity ay. It corresponds to the largest finishing time of
the evaluation section by the k processcs. When k < p, therefore, a, is simply given by
the average ‘of the maximum of k independent random variables distributed according to
the same probability distribution F, and we have (see, for example, (14, p. 46)):

oy = /0 @ rdlFkm] = /; P - P, | (5.2)
where, for clarity, the index k has been dropped from Fk' Let us examine some
probability distributions F, for which analylical results can be derived from
equation (5.2).

1

(i) Exponential distribution with parameter yng—l;. Using simple integral

calculus, equation (5.2) yields:

1 k
ak = [T Utk - L
1 ,
F-3 .‘L L"l o _I_ l
H /0 1k -du 7 ISLZ—SI! i

where Hy is the k-th harmonic number.

(tt) Uniform distribution over the lnterval‘[zk--crkﬁ, ”k""km (i. e, with mean &,
and standard variation o). Integration of equation (5.2) yields, i.n this case

(see, for example, [14, p. 27]: |
o = o+ Eloy 3, | - (5.4)
Similar results can be obtained for other probability distributions £, but unfortunately
they usually cannot be expressed so easily. For most common probability distributions
Fy, however, aj is shown to be in the form aj =ty + w0y (as is the‘ case in
equation (5.4), for example), where the coefficient o) (which depends on F) can be found

in many numerical tables. (See, for example, [14, p.50] for a short table listing o) in the

case of the normal and the uniform distributions.)

When k > p, the quantity a) cannot be obtained directly from equation (5.2) since, as
long as ¢ processes, with p < i <k, have not completed their evaluation sections, they are

in competition for the p processors available, and they are, therefore, slowed down by the

162 : CHAPTER V

factor fbl Levt x;, for 1 <i<k, be .the i-th smallest execution time required by ‘the k
processes, The first process tp complete its evaluation section has to share the p
processors with the remaining k-1 processes during its entire execution. It finishes
therefore after a time y - g x . Similarly, the second process to complete its evaluation
section, finishes after a time y; =y, + L‘é’—(xrx?). The last process to complete its
e\v/aluat'mn section finishes after a time:

ap = Kap o Kol -ag) v Bl pomy) ¢ (-2 p) . (55)
The quantities x;, for I s i < k, can be evaluated directly from the distribution function F,
and we have (see, for example, [14, p. 25])

2 = k(WD) LT F e Rt dF), (5.6)

where, for clarity, the index k has been dropped from F). Again, x; can be evaluated

¢

explicitly for some distribution functions . In particular, we have the following results.
() Exponential distribution with parameter y = ‘Y]k Integrating equation (5.6) by

parts and solving a recurrence relation, we find that:

{ - 1
2, = & i
¢ Hogeivisrste T

where Hy is defined to be 0. We deduce immediately from equation (5.5) that:

= [Hp - He i legg,

ap = [!f,’r,ll N Hp]zk, 5.7)
(iL) “Uniform distribution over the interval [z) -0 V3, t) 40 ¥3]. From [14, p. 27D,

we oblain:

We deduce immediately from equation (5.5) that, in this case:
ap = fug + Ploy V3. (5.8)
Again, for other probability distributions f, equation (5.6) can always be integrated

numerically, and, for most probability distributions, numerical tables are available (see,

for example, [60] for the normal distribution).

Let us now consider the quantity b, of equation (5.1). Since all processes will try
to access the critical section at the same time (when the last process completes its
evaluation), by is simply given by: -

bk &= i(ck*?c‘k'*...*kck) = ’—‘—;—Lck

EXPERIMENTAL RESULTS 163

Table 5.1 summarizes the results of this section and presents, for k = 1, 3, 6 and 12,
the average time t; for a complele cycle when the distribution Fy is exponential, normal
and uniform. In these three cases, the parameters z;, and ¢ are taken directly from the
estimates derived in Section 4.2.2; o has been estimated in the same way. These results
are compared to the results derived from the experiments presented in Section 4.3. (All

timings in the table are given in ms)

k=1 k =3 k=6 k=12
Exponential: 1338.50 1087.99 923.27 872.88
Normal: 1338.50 694.90 513.73 604.39
Uniform: 1338.50 696.74 511.37 589.70

Experimental: 1327.47 700.20 515.96 629.42
Table 5.1 - The average execution time for a complete cycle with Jacobi’s method

We not‘ice that the exponential distribution cerlainly does not predict adequately the
experimental results, A reason‘for this discrepancy is that the exponential distribution
does not take into account the standard deviation oy which is a direct measure of the
fluctuations in the execution times of the evaluation section. These fluctuations have an
important role in the case of Jacobi's method since the processes (in the first part of their
(‘;(zles) synchronize themselves on the largest execution time. The results obtained with
the normal and uniform distribution, on the other hand, show a fair agreement with the
experimental results; the difference, in this case, is partly due to the fact that the
experiments have not always been run in a consistent manner (for instance, the results
presented in Section 4.2 and 4.3 have not been obtained with the same number of

processors).

5.2 - Asynchronous algorithms

In the parallel implementations of the AJ and AGS methods, the processes

164 ' CHAPTER V.

cooperating in the evaluation of an iterate have the cyclic behavior depicted in Figure 5.2.

In this case, the wailing section is only due lo the presence of the critical section.

Evaluation Waiting Critical
t t } +
section section section
Cycle

Figure 5.2 - Cyclic pattern of a process with the AJ and AGS methods

The parallel implementation with k processes on p processors can be modeled by

the queueing system of Figure 5.3.

(1)
:{-.@

N e /

v
-

(a) k customers in the whole system: our processes;
(b) p servers in system (1): the evaluation section;
(c) 1 server in system (2): the critical section;

(d) wilh the restriction that at most p servers are

active at the same lime in the entire system,
Figure 5.3 - A queueing system for asynchronous algorithms

This queueing system has been extensively studied in the case k = p as a model of
time -shared processor [55], [33], when the two probability distributions Fj. and Gy are

exponential. We show that the results can be extended to the case k > p.

Let us assume that £ and G, are exponential distributions with parameter u = 1/z),

EXPERIMENTAL RESULTS 165

and A = I/c), respectively. For i =0, 1, ., k, let g; be the steady state probability that ¢
customers be in system (1) of Figure 5.3 (i. e., i processes are executing their evaluation
sections, while k-i processes are ready to execule the critical section). Let x, denote the
probability that no process be executing the critical section, either because all processes
are within their evaluation sections or, possibly, because no processor is allocated to a

process ready to execute the critical section.

We assume throughout that, if there exists at any time in the entire system ¢
processes, with i > p, which are not blocked (waiting for another process to complete the
critical section), each of the i processes receives the same fraction l‘l of the computing

power. It follows directly that the probability #, is given by:

o = qd * a1

psz%«l

Theorem 5.1:.
Assume that k > p. The average time t, required to execute a c:ompleté cycle is

given by:

ty = key/Ung, (5.10)
where 7 is the probability that the server of system (2) be idle (i. e., no process is
executing the critical section, although some may be blocked because no processors
are available). If we assume that each process which is not blocked receives an equal

share of the computing power, the probabilities q;, for i = 0, 1, .., k, satisty:

ai if i<k,
qp = § pEdlpeie i psiskd, - (5.11)
p(—’if—‘l—)lﬁ““iqk if 0sisgp-1.
i

Proof:

Equations (5.10) and (5.11) are immediate consequences of simple results of
queueing theory. Equation (5.10) follows directly from Little’s formula (see, for example,
[33, p.17] by considering the throughpul of system (2). Equation (5.11) also follows

directly from the fact that (under the exponential assumption for both F and Gy) the

166 CHAPTER V

system of Figure 53 corresonds to a pure birth-death process (see, for example,

(33, p.89)). n

The average execution time, ty, for a complete cycle can now be evaluated from the
results of Theorem 5.1 using equation (5.9) and the fact that:

q0+q1+..._+qk=1.

5.3 - A comparison with the exparimental rasults

The results of Sections 5.1 and 5.2 provide us with an estimate of the average time
ty required to egecute a complete cycle in the parallel implementation with k processes of
Jacobi's method and of the Al and AGS methods. In order to evaluate the total running
ttme T for the three methods, we also need some estimate of the number of iterations Ny
required by each of the methods in the parallel implementation with k processes. In the
case of Jacobi’s method, Nj does not depend on k and can be computed analytically from
the spectral radius, p(B), of the Jacobi matrix. In the case of the AJ and AGS methods, we
have simply chosen to take directly the number of iterations observed in the experiments

themselves.

The total running time Tj = Ny.t, now follows immediately. The resulting values
are plotted in Figure 3.3, along with the values observed from the experiments. (In the

case of Jacobi’s method, t; is evaluated using for F a uniform distribution.)

EXPERIMENTAL RESULTS ' 167

Time (sec.)
400 + . e Experimental results
Theoretical results
350 +
300 -} '
250 -+
’//"‘ JaCObl
200 + P
N . ,""-‘ /) - - AJ
150 + e .
S g PPN .
\\‘u e
100 + N P .-+ AGS
50 -+
0 t } s t { { ¢ 1 { } $ } $ t {
0 1 2 3 4 5 6 7 8 9 10 11 12 13 114 15

Number of processes

Figure 5.4 - Experimental and theoretical running times

We see that the "theory" matches fairly well the actual measurements especially in

the case of most interest, i. e., when k < p (clearly we cannot expect any gain from using

‘more processes than processors). In parficular, if we rely on our model, at least for k < p,

we can compute the optimum value for k (beyond which no gain is obtained), and we find,

in particular, that

k()pl =

14
15

12

for Jacobi’s method,
for the AJd method,

for the AGS method.

168 ' CHAPTER V

6 - Concluding remarks

Tﬁe actual implementation of parallel algorithms on an asynchronous multi'processor
has proved to be an invaluable help for providing us with a better understanding of
parallel algorithms, for illustrating some of the notions and concepts associated with these
algorithms, and for supporling some of the assumptions that we have introduced in their
analysis. In particular, the figures of Section 4.2.1 show clearly that the execution time of
a program can hardly be regarded as a constant, and that ii is more accurate to consider
this execution time as a random variable distributed according to some probability
distribution. In view of the histograms presented in Figures 4.2 through 4.9, an Erlang or
a normal distribution seems to be a reasonable approximation, {n our case, to account for
the fluctuations in the execution limes of the programs that we have implemented on

C.mmp.

These experiments also constitute a clear illustration of the advantage of purely
asynchronous algorithms over synchronized algorithms. To give a quantitative evaluation
of the effects of synchronization, assume that il‘takes I unit of time for a pr‘ocess to
perform one step of the iteration (excluding any overhead). Then, it follows from the
results we have presented that, in a parallel 'lmplémentatlon with 6 procésses, it will take
each process an average of about 1.05, 1.62 and 2.34 units of time with the PA, the AJ and
Jacobi's methods, respectively, to perform the same step of the iteration (for that matter,
both the AJ and the AGS methods have the same behavior). While the overhead in the PA
method (about 57) is mainly due to memory contention, the overheads in thé AJ and
Jacobi’s methods measure almost directly the effects of using critical sections and of using

full synchronization between the processes, respectively.

~ In addition to the experiments reported in this chapter, we have also run some other
experiments to consider the effect of the introduction of a relaxation factor in the
different iterative schemes. These results confirmed exactly the simulation results

obtained by Rosenfeld and presented in [52]. In particular, while we are guaranteed of

EXPERIMENTAL RESULTS 169

the convergehce of any asynchronous iterations when we use a relaxation factor » in the
range 0 < @ < 2/[l+p(8)]. this is not so when o 2 2/[1+p(B)], and divergence was, indeed,
often observed (for the problem that we have considered, p(B)~ 0991, thus
2/[1+p(B)] ~ 1.005). Il seems to be very useful to obtain more (experimental or analytical)
results on the effects of using relaxation factors, since our experiments show that (when

convergence is achieved) it is a very promising way to accelerate the iteration.

The results presented in Section 5 are also an interesting aspect of this chapter.
We have shown how simple techniques from order statistics and queueing theorylc..ould be
adapted to the analysis of algorithms for asynchronous multiprocessors. The analysis that
we have developed gives a fair account of the experimental results. This is very useful in
practice since it can be used lo predict the optimal decomposition of a problem (i. e., the
optimal number of processes to create in order to, for example, minimize the overall

execution lime).

170

Chapter VI

Conclusion

1 - A summary of the results and their implications

An evident advantage of using asynchronous multiprocessors, and parallel computers
in general, rather than conventional uni-processors, is to be able to substantially reduce
the execution time required for solving a problenf Given a particular parallel computer,
therefbre, one of the first goals in designhing a parallel algorithm for solving a' problem is
to try to minimize the required execution timé.on the given machine. This leads us

naturally to consider the execulion time of a parallel algorithm as one of the pf‘lmary

measures of the performance of the algorithm,

When we consider a sequential algorithm for solving a given problem, say, sorting or
matrix multiplication, the number of comparisons or the number of scalar multiplications
performed by the algorithm is usually used as the measure of complexity of the algorithm,
In this respect, parallel algorithms for SIMD machines are very similar to sequential
algorithms, in the sense that, in this case, the number of parallel instructions (e. g., parallel
comparisons or parallel multiplications) is the usual complexity measure of an algorithm,
The intuitive reason for this cost measure with both sequential algorithms and parallel
algorithms for SIMD machines is that the execution time in these two types of algorithms
ts directly related lo the number of instructions executed, and that, therefore, it is

-realistic to only count those instructions for performance evaluation purposes.

When we are dealing with a parallel algorithm for asynchronous multiprocessors,

171

172 : | CHAPTER VI

however, its non-deterministic behavior contributes to making its analysis drastically
different from the analysis of a sequential algorithm. In particular, there usually does not
seem to exist a direct relation between the (average) execution time of a parallel
algorithm for multiprocessor and the number of instructions executed by each of the
processes. As an illustration, let us examine again Jacobi’s method for solving a linear
system of n equations, and consider a parallel implementation with k processes in which
each process evaluates ¢ = n/k components. Let us first choose, as a measure of
performance for this implementation, the number of parallel evaliations of a co‘mponent
(or, within a factor of n, the number of parallel multiplications). The immediate conclusion,
in this case, is that, in order to decrease the cost of the algorithm, we should always
increase the number of processors. Let us now consider directly the total average time T
required to perform one step of the iteration with the parallel implementation with k
processes. Assume, as before, that the execution times for the evaluation of g components
by all k processes are independent identically random variables distributed according to
an exponentlial distribution with mean). Then, due to the synchronization between t.he
processes, thp total average time for one iteration step is given by Ty = Hpwy, where Hy
is the k-th harmonic number. lLet us further as:sﬂme that z is of the form ¥y = a + ,—i-b
(which is natural in view of our decomposition). Then, it follows that for large k, the total -
average lime grows w.ith k like a.n(k) and, thus, increases as the number of processes
'mcréasm. Therefore, we conclude, in this case, that there exists a (finite) number k of
processes which minimizes the total average time T,. This is in contradiction with the

conclusion derived from using the other cost measure.

This example shows .that the analysis of the efficiency of a parallel algorithm for
asynchraonous multiprocessors usually requires techniques very different from those
previously developed in the analyéis of sequential algorithms or parallel algorithms for
SIMD machines. We think that one of the main contributions of this thesis is to have
presenfed and used very diverse techniques applicable in the analysis of parallel

algorithms for asynchronous multiprocessors. These techniques are used in various

CONCLUSION 173

applications areas. The analyses developed in Chapter Il Section 5 and in Chapter IV
Section 7.3.1, for instance, are related to some analyses commonly found in Operations
Research, while the treatment of Section 6 of Chapter Il applies some techniques typical of
renewal theory. In Chapter Il Sections 6 and 8, the complexity of asynchronous iterative
methods is derived using the tools of numerical analysis (this is obviously due to the

nature of the problem treated in this chapter).

V;Ie also have presented in Chapter V Section 5 some of the techniques which seem
to be most typical of the analysis of parallel algorithms for multiprocessors, namely
techniques drawn from order statistics and from queueing theory. An important advantage
‘of this abprpach is that a large number of results are available from well developed
theories. Most of these results are directly applicable to the analysis of parallel
algorithms for asynchronous multiprocessors, m:»d we have shown, in particular, that a very
simple queueing model (inilially intended to represent a time-shared uni-processor)
accounts appropriately for the behavior of an asynchronous paraltlel algorithm in which
the processes communicate among themselves through the use of a critical section. These
results can be used to predict the oplimal decomposition of a problem (i. e., the optimal
number of processes cooperating in the solution of the problem). Some other examples of
the use of queueing theory lo the analysis of parallel algorithms for multiprocessors are

also presented in [51] with various applications to sorting algorithms.

A deficiency common to several of the énalyses that we have presented is that, in
some cases, strong assumplions must be made in order to be able to carry out the analysis
of an algorithm. In Chapter 1l Section 5 and in Chapter V Section 5.2, for instance, our
results are based on the assumption that the various execution times are exponentially
distributed. We have abserved, however, that whenever we were also able to derive an
analysis of an asynchronous algorithm based on other (more realistic) probability
distributions (see Chapter Il Section 6, for instance), the results did not show any

substantial differences with the results derived from the exponential distribution.

174 CHAPTER VI

Moreover, the analytical results derived in Chapter V Section 53 are in excellent
agreement with the experimental results that we have presented in Chapter V. Therefore,
it seems that, although the exponential distribution is not necessarily a very realistic
assumplion for the distribution of the execution times, it still provides us with useful
results for asynchronous algorithms. In the case of synchronized algorithms (see
Chapter V SGection 5.1), however, analylical results obtained with the exbouential
distribution do not show an excellent agreement with the experimental results, whereas a
closer approximation is achieved with the normal and the uniform distrib.utions. A reason
for this discrepancy is that the fluctuations are measured directly by the standard
“deviation of the probability distribulion and this cannot be captured by the exponential

distribulion (for which the standard deviation is the same as the mean).

Another very important aspect of the thesis is to have presented and illustrated
some of the notions and concepls unique in the design of parallel algorithms for
asynchronous multiprocessors. The algorithm proposed in Chapter 1l, for example,
illustrates an a priori very counter-intuitive idea that the execution of a purely sequential
program can be sped-up on an asynchronous multiprocessor without introducing any
parallelism within the program itself. The acceleration is achieved by decomposing the
program into a succession of tasks (executed serially), and by taking advantage of the
fluctuations in the execution times of the tasks. These fluctuations in computing times
represent a dimension unique in the design of parallel algorithms for asynchronous
multiprocessors. Their consequences are twofold. A negative aspect is evidenced with
the example of Jacobi’s method presented in thé introductory chapter; the net effect, in
lth'ls (tasse,‘is'; to create a substantial overhead due to the use of a full synchronization of
the processes. The algorithm of Chapter 1I, on the other hand, demonstrates that the
fluctuatipns in tHe computing times can actually be used to accelerate the execution of a
program. Althotigh we do not bfeel that the algorithm in this chapter should be used-
directly as il is presented, we think that the idea embedded into the algorithm can be used

together with other considerations, such as reliability, in the construction of asynchronous

CONCLUSION 175

algorithms. Probably the most important aspect of the algorithm presented in Chapter 1l is
that it illustrates the fact that innovations are required for the design of parallel

algorithms for asynchronous multiprocessors.

The experimental resulls presented in Chapter V are fundamental in the thesis.
They lend us insight into the behavior of parallel programs execuled on an asynchronous
multiprocessor; and, with a better understanding of their behavior, we can expect to be
able to design better parallel algorithms for multiprocessors. In addition, they have begn
partiwlarly,useful in validating some of the assumptions that we have made in our

analyses. These experimental results are important in another practical aspect, namely,

they provide us with a quantitative comparison of the different uses of synchronization.

The results that we have mentioned so far contribute directly toward the general
goal of the thesis: design and analysis of parallel algorithms for asynchronous
multiprocessors. Some of the results of the thesis seem to be of theoretical and practical

importance in their own rights.

In Chapter III, for instance, we have introduced the class of asynchronous iterative
methods to remove the need for synchronization in the implementation of iterative methods
on a multiprocessor. We think that the results presented in this chapter are a contribution
to the area of iterative methods, and, in particu'lar, they provide some extensions and
generalizations of previously published results [11], [41], [42], [43], [50]). Theorem 4.1,
for example, extends the convergence results obtained by Chazan and M'tr.anker for chaotic
iterations [11], by relaxing a lechnical condition that they had introduced; furthermore,
our results also provide a generalization to non-linear operators. The results of
Section 5, on the class of asynchronous iterative methods with memory, also generalizes

some of the results obtained by Miellou [42].

Chapter IV contains some important results concerning the «-f pruning algorithm.,

We have shown in the first part of this chapter that the branching factor of the

176 CHAPTER VI

o3 pruning algorithm in a uniform game tree of degree n is O(nAn n), when all bottom
values are assighed independent identically distributed random variables. This confirms a
claim by Knuth and Moomv[i?.‘i] that deep cut-offs only have a second order effect on the
‘behavior of the algorithm. The results of the second part constitute the main contribution
of Chapler IV. We have proposed in this parl an asynchronous parallet implementation of
the «-f8 pruning_ algorithm. Our analysis of the parallel implementation with k processes
shows, rather surprisingly, that the speed-up is larger than k. This implies that the‘
(sequential) o2 pruning algorithm is not optimal and can be substantially improved upon.
This particular result, which has been obtained very indirectly in the thesis, might find

applications in the area of Artificial Intelligence.

2 - Some topics for future research

We certainly do nol believe that we have covered in this thesis every possible
aspect of the design and the analysis of algorithms for asynchronous multiprocessors.
Clearly, much research remains to be done in this area, and this section mentions several

topics for fufure research.

We think that the thesis has clearly illustrated an important characteristic of
algorithms for multiprocessors, namely, the a priori unpredictable behavior in their
exec'ution. This characteristic, therefore, makes it an absolute requirement to consider
very carefully the correctness of parallel algorithms for multiprocessors, and research in
this area would certainly be very useful. We are (personally) convinced that every
algorithm proposed in this thesis performs correctly, and We have also given (we hope)
convincing arguments for their correctness. However, in each case, the 'pmof of
correctness is based on techniques which are, usually, only adequate to the problem at

hand. A formal (and general) theory would certainly be a very useful tool for the design

of algorithms for multiprocessors.

Probably, the greatest emphasis of the thesis has been placed on the analysis of

CONCLUSION 177

parallel algorithms for asynchronous multiprocessors, and we have presented (and used)
diverse techniques which appear to be applicable to numerous problems. , Those
techniques have proved to be effective to the algorithms presented, but we think that most
of them could still be improved upon, in particular with regard to the generality of their
applications. Possible generalizations in this area would include, for instance, the
relaxation of some of the assumptions used in the various analyses that we have
presented. The execution time of an algorithm has been regarded in most of the thesis as
the primary measure of complexity of the algorithm. While this measure is, in fact, of
primary importance in real time applications, other complexity measures should also be
considered. Processor utilization, for example, would be another meaningful measure of
performance, particularly if an asynchronous multiprocessor is used in a multi-user
environment. In this case, it would also be of interest to consider the possibility of
increasing the processor utilization by multiprogramming several programs (for example,

several instances of the same parallel algorithm).

The experiments presented in Chapter V have proved to be an invaluable tool. In
general, direct experimentation on an asynchronous multiprocessor can be very useful
'especially' when it is difficult to derive }tmy analytical results. In particular, it would be
very interestling to perform more experiments with asynchronous iterations, for example,
to consider the effects of using a relaxation factor. Other experiments could also be
performed to evaluate some of the adaptative asynchronous iterations described in

Section 3.4.2 of Chapter V.

The parallel implementation that we have proposed for the o-f8 pruniﬁg alédfithnﬂ
appears to be very efficient when few processes are used, but the maximum. speed-up
achievable wilh this method is typically limited to 5 or 6 even with an infinity of
processes. It does not seem that a direct adaptation of the -8 pruning algorithm into a
parallel algorithm is the best approach to follow, particularly because it is based on a

depth first search, which is inherently sequential. A better approach would probably be

178 CHAPTER VI

to consider a game tree searching algorithm based on a best first search along with a

/

preliminary evaluation of the internal nades.

Lastly,'we view this Lhesis as a first step towards a systematic study of the issues

raised by the design and the analysis of algorithms for asynchronous multiprocessors.

(1]

(2]

(3]

(6]

(71

(8]

[9]

Bibliography

Anderson, J. P., Hoffman, S. A, Shifman, J.,, and Williams, R. J.,, D825 - A multiple

computer system for command and control, Proceedings of the AFIPS 1962 Fall Joint
Computer Conference, Vol. 22, 1962, pp. 86-96.

Andler, S., Synchronization primitives and the verification of concurrent programs,
Carnegie-Mellon University, Computer Science Department Report, May 1977,

Barak, A. B., and Downey, P. J., Asynchronous parallel execution of a chain of tasks
with interrupts, The Pennsylvania State University, Computer Science Department
Report, December 1977.

Barak, A. B, and Downey, P. J,, Using task duplication to reduce finishing time, The
Pennsylvania State University, Computer Science Department Report, February 1978.

Barnes, G. H., Richard, M. B., Kato, M., Kuck, D. J,, Slotnick, D. L., and Stokes, R. A,, The
ILLIAC IV computer, IEEE Transactions on Computers, Vol. C-17, No. 8, August 1968,
pp. 746-757.

Baudet, G. M., Asynchronous iterative methods for multiprocessors, Journal of the
ACM, Vol. 25, No. 2, April 1978, pp. 226-244,

Baudet, G. M., On the branching factor of the Alpha-Beta pruning algorithm,
Carnegie-Mellon University, Compuler Science Department Report, September 1977,
(To appear in Artificial Intelligence.)

Baudet, G. M,, Brent, R. P, and Kung, H. T., Parallel execution of a sequence of tasks
on an ‘asynchronous multiprocessor, Carnegie-Mellon University, Computer Science
Department Report, June 1977,

Baudet, [3., and Stevenson, D., Optimal sorting algorithms for parallel computers, JEEE
Transactions on Computers, Vol. C-27, No. |, January 1978, pp. 84-87.

[10] Charnay, M., ltérations chaotiques sur un produits d’espaces métriques, Thése de

3eme cycle, Université Claude Bernard, Lyon, 1975.

[11] Chazan, D., and Miranker, W., Chaotic relaxation, Linear Algebra and Its Applications,

Vol. 2, 1969, pp. 199-222.

[12] Chen, T. C,, Overlap and pipeline processing, in Introduction to Computer Architecture,

ed. by H. G. Stone, Science Research Associates, Chicago, 1975, pp. 375-431.

[13] Courtois, P. J., Heymans, F., and Parnas, D. L., Concurrent control with ‘readers’ and

‘writers’, Communications of the ACM, Vol. 14, No. 10, October 1971, pp. 667-668.

[14] David, H. A., Order Statistics, John Wiley and Sons, New York, 1970.

[15] Digital Equipment Corporation,A BLISS-11 programmer’s manuel, DEC, Maynard, 1972.

179

180 T

[16] Dijkstra, E. W, Co-operating sequential processes, in Programming Languages, ed. by
F. Genuys, Academic Press, New York, 1966, pp. 43-112.

(177 Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, Englewood Cliffs, New
Jersey, 1976.

[18] Donnelly, J. D. P., Periodic chaotic relaxation, Linear Algebra and Its Applications,
Vol. 4, 1971, pp. 117-128.

[19] Enslow, P. H., Multiprocessor organization - A survey, Computing Surveys, Vol. 9,
No. 1, March 1977, pp. 103-129.

[20] Flon, L., On the design and verification of operating systems, Ph.D. dissertation,
Carnegic-Mellon University, May 1977.

[21] Flynn, M. J., Very high-speed computing systems, Proceedings of the IEEE, Vol. 54,
No. 12, December 1966, pp. 1901-1909.

[22] Forsythe, G. E., and Wasow, W. R, Finite-Difference Methods for Partial Differential
Equations, John Wiley and Sans, New York, 1960.

[23] Fuller, S. H., Gaschnig, J. G, and Gillogly, J. J., Analysis of the alpha-beta pruning
algorithm, Carnegie-Mellon University, Computer Science Department Report, July
1973. '

[24] Gillogly, J. 1, The TefhnolOgy chess program, Artificial Intelligence, Vol. 3, No. 3, Fall
1972, pp. 145-163. :

[25] Gillogly, J. J.,, Performance analysis of the Technology Chess Program, Ph.D.
dissertation, Carnegie-Mellon Universily, March 1978,

[26] Habermann, A. N.,-Synchronization of communicating processes, Communications of the
ACM, Vol. 15, No. 3, March 1972, pp. 171-176.

[27] Heller, D., A survey of parallel algorithms in numerical linear algebra,
Carnegie-Mellon University, Computer Science Department Report, February 1976.
(To appear in SIAM Review.)

[28] Hibbard, P., Hisgen, A., and Rodehelfer, T., A language implementation design for a
multiprocessor computer system, Froceedings of the Fifth Annual Symposium on
Computer Architecture, Palo Alto, California, April 3-5, 1978.

[29] Hintz, R. G, and Tate, D. P, Control Data STAR-100 processor design, Proceedings of
Compeon 72, IEEE Computer Society Conference, IEEE, New York, 1972, pp. 1-4.

[30] Jones, A. K., Chansler, R.), Durham, I, Feiler, P. H,, Scelza, D. A,, Schwans, K., and

Vegdahl, S. R.,, Programming issues raised by a multiprocessor, Proceedings of the
IEEE, Vol. 66, No. 2, February 1978, pp. 229-237.

[31] Kantorovitch, L. V., Vulich, B. 7., and Pinsker, A. G., Functional Analysis in Partially
Ordered Spaces (Russian), Gostekhizdat, Moscow, 1950.

[32] Kleinrock, L., Certain analylic results for time-shared processors, Information
Frocessing 68, Norlh-Holland, Amsterdam, 1969, pp. 838-845,

[33] Kleinrock, L., Queueing Systems, Volume I: Theory, John Wiley and Sons, New York,
1975,

BIBLIOGRAPHY , 181

[34] Knuth, D. E., The Art of Computer Programming, Volume 1: Fundamental Algorithms,
Addison-Wesley, Reading, Mass., 2nd edition, 1973.

[35] Knuth, D. E,, and Moore, R W., An analysis of alpha-beta pruning, Artificial
Intelligence, Vol. 6, No. 4, Winter 1975, pp. 293-326.

[36] Kuck, D. J.,, A Survey of parallel machine organization and programming, Computing
Surveys, Vol. 9, No. 1, March 1977, pp. 29-59.

[37] Kung, H. T., Synchronized and asynchronous parallel algorithms for multiprocessors, in
Algorithms and Complexity: New Directions and Recent Results, ed. by J. F. Traub,
Academic Press, New York, 1976, pp. 153-200.

[38] Kung, H. T., The complexity of coordinating parallel asynchronous processes,
Proceedings of the Fifteenth Annual Allerton Conference on Communication, Control,
and Computing, University of Illinois at Urbana-Champaign, 1977, pp. 34-43.

[39] Kung, H. T., and Lehman, P. L., A concurrent database manipulation problem: binary
search trees, Carnegie-Mellon University, Computer Science Department Report, to
appear,

[40] Kung, H. T.,, and Song, S.W.,, ‘A parallel garbage collection algorithm and its
correctness proof, Froceedings of the Eighteenth Annual Symposium on Foundations of
Computer Science, October 1977, pp. 120-131.

[41] Miellou, J.-C., ltérations chaotiques & retards, Comptes Rendus de l'Academie des
Sciences de Faris, Series A, Vol, 278, April 1974, pp. 957-960.

[42] Micellou, J.-C., Iterations chaotiques a retards; études de la convergence dans le cas
d’espaces parliellement ordonnés, Comptes Rendus de l'Academie des Sciences de
Paris, Series A, Vol, 280, January 1975, pp. 233-236.

[43] Miellou, J.-C., Algorithmes de relaxation & retards, R. A I.R. 0., Vol. 9, R-1, April
1975, pp. 55-82.

[44] Miranker, W. L., Parallel methods for solving equations, IBM T. J. Watson Research
Center, Research Report RC 6545 (No. 28250), May 1977,

[85] Newborn, M. M., The efliciency of the alpha-bela search on trees with
branch-dependent terminal node scores, Artificial Intelligence, Vol. 8, No. 2, April
1977, pp. 137-153.

[46] Orlega, J. M, and Rheinboldl, W. C., Iterative Solution of Nonlinear Equations in
Sewveral Variables, Academic Press, New York, 1970.

[47] Owicki, ., and Gries, D., Verifying properties of parallel programs: an axiomatic
approach, Communications of the ACM, Vol. 19, No. 5, May 1976, pp. 279-285.

'[48] Raskin, L., Performance of a stand alone Cm* system, in Cm* review, ed. by
S. H. Fuller, A. K. Jones, and 1. Durham, Carnegie-Mellon University, Computer Science
Department Report, June 1977, pp. 26-56.

[49] Robert, F., Contractions en norme vectorielle, Linear Algebra and Its Applications,
Vol. 13, 1976, pp. 19-35.

[50] Robert, F., Charnay, M., and Musy, F., Itérations chaotiques série-paralléle pour des
équations non-linéaires de point fixe, Aplikace Matematicky, Vol. 20, 1975, pp. 1-38.

182

[51] Robinson, J. T., Analysis of asynchronous multiprocessor algorithms with application
to sorting, Proceedings of the 1977 International Conference on Parallel Processing,
August 1977, pp. 128-135. (A revi:ed version is to appear in IEEE Transactions on
Software Engincering.)

[52] Rosenfeld, J. L., A case study in programming for parallel processors, Communications
of the ACM, Vol. 12, No. 12, December 1969, pp. 645-655.

[53] Rosenfeld, J. L., and Driscoll, G. C., Solution of the Dirichlet problem on a simulated
parallel processing system, Information Processing 68, North-Holland, Amsterdam,
1969, pp. 499-507.

[54] Russel, R. M., The CRAY-I computer system, Communications of the ACM, Vol. 21,
No. 1, January 1978, pp. 63-72.

[55] Scherr, A. L., An Analysis of Time-Shared Computer Systems, MIT Press, 1960.

[56] Slagle, J. R, and Dixon, J. K., Experiments with some programs that search game trees,
Journal of the ACM, Vol, 16, 1969, pp. 189-207.

[57] Stone, H. S., Parallel computers, in Introduction to Computer Architecture, ed. by
H. 6. Stone, Science Research Associates, Chicago, 1975, pp. 318-374.

[58] Stone, H. S., Sorting on STAR, IEEE Transactions on Software Engineering, Vol. SE-4,
No. 2, March 1978, pp. 138-146. ,

[59] Swan, R 1, Fuller, S. H,, and Siewiorek, D. P,, Cm*: a modular multi-microprocessor,
Proceedings of the AFIPS 1977 National Computer Conference, Vol. 46, 1977,
pp. 637-644.

[60] Teichroew, D., Tables of expected values of order statistics and products of order
statistics for samples of size twenty and less from the normal distribution, Annals of
© Mathematical Statistics, Vol. 27, 1956, pp. 410-426.

[61] Thompson, C. D., and Kung, H. T., Sorting on a mesh-connected parallel computer,
Communications of the ACM, Vol. 20, No. 4, April 1977, pp. 263-271.

[62] Varga, R., Matriz Iterative Analysis, Prentice -Hall, Englewood Cliffs, New Jersey, 1962.

[63] Wulf, W. A,, and Bell, C. G., C.mmp - A multi-mini-processor, Proceedings of the AFIPS
1972 Fall Joint Computer Conference, Vol. 41, December 1972, pp. 765-777.

[64] Wulf, W., Cohen, E.,, Corwin, W., Jones, A, Levin, R, Pierson, C,, and Pollack, F.,
"Hydra: the kernel of a multiprocessor operating system,” Communications of the
ACM, Vol, 17, No. 6, June 1974, pp. 337-345.

[65] Yau, S. S., and Fung, H. S., Associative processor architecture - A survey, Computing
Surveys, Vol. 9, No. 1, March 1977, pp. 3-27.

